Algebra I Notes

9.1 Quadratic Graphs and Their Properties

Objective: To graph quadratic functions in the form $y=a x^{2}$ and $y=a x^{2}+c$

PARABOLA - the " U " shaped graph of a quadratic function Standard Equation: $y=a x^{2}+b x+c$

- If $\mathrm{a}>0 \rightarrow$ parabola opens up (min) If $\mathrm{a}<0 \rightarrow$ parabola opens down (max)
- Vertex $\left(-\frac{b}{2 a}, \mathrm{y}\right)$ - the point where the parabola changes direction
- Axis of Symmetry- $\left(\mathrm{x}=-\frac{b}{2 a}\right)$ the vertical line through the vertex that cuts the parabola in half
- $\underline{\mathrm{Y} \text {-intercept }}$ (c) - where the parabola crosses the y-axis

Example 1 Graph $y=x^{2}$. This is referred to as the "parent graph."

\mathbf{x}	$\mathbf{y}=\mathbf{x}^{\mathbf{2}}$	\mathbf{y}

Vertex: \qquad Max/Min: \qquad

Axis of Symmetry:

\qquad
Width: \qquad

Domain: \qquad

Range: \qquad

Example 2 Graph $y=\frac{1}{4} x^{2}$. How do you think this graph compares to the parent graph?

Vertex: \qquad Max/Min: \qquad
Axis of Symmetry: \qquad
Width: \qquad
Domain: \qquad
Range: \qquad

Example 3 Graph $y=-2 x^{2}$. How do you think this graph compares to the parent graph?

\mathbf{x}	$\mathbf{y}=-\mathbf{2 \mathbf { x } ^ { 2 }}$	\mathbf{y}

Vertex: \qquad
Max/Min: \qquad

Axis of Symmetry: \qquad
Width: \qquad

Domain: \qquad
Range: \qquad

Example 4 Order each set of functions from the widest to the narrowest function.
a) $y=-3 x^{2}, y=-5 x^{2}, y=-x^{2}$
b) $y=\frac{1}{6} x^{2}, y=\frac{1}{4} x^{2}, y=\frac{1}{2} x^{2}$

Example 5 Graph each function of the form $y=a x^{2}+c$
a) $y=x^{2}-3$
b) $y=-\frac{1}{2} x^{2}+3$

\mathbf{x}	$\mathbf{y}=\mathbf{x}^{2}-\mathbf{3}$	\mathbf{y}

How does the " a " value affect the graph?

How does the " c " value affect the graph?

Example 6 Match each function with its graph.

A. $y=-x^{2}+2$
B. $y=-x^{2}-2$
C. $y=x^{2}-2$

Algebra I

9.2 Quadratic Functions

Objective: To graph quadratic functions in the form $y=a x^{2}+b x+c$

WARM-UP Graph $y=-2 x^{2}+4 x$
$a=$ \qquad $b=$ \qquad c $=$ \qquad

\mathbf{x}	$y=-2 x^{2}+4 x$	\mathbf{y}

Vertex:

Open up/down:

Max/Min:

Axis of Symmetry*:

Domain:

Range:

NOTE: The axis of symmetry is in the equation $y=a x^{2}+b x+c$ is: \qquad

Example 1 Graph $y=x^{2}-6 x+4$ without using a table.
$a=$ \qquad b= \qquad $\mathrm{c}=$ \qquad

Axis of Symmetry:

y-intercept:

Example 2 Graph $y=-x^{2}+2 x-5$ without using a table.
$a=$ \qquad b= \qquad $\mathrm{c}=$ \qquad
Axis of Symmetry:

Vertex:

y-intercept:

Example 3

A baseball player hit a ball with an upward velocity of 64 feet $/ \mathrm{sec}$. Its height h in feet after t seconds is given by the function $h(t)=-16 t^{2}+64 t+6$.
a. What is the maximum height the ball reaches?
b. How long will it take the baseball to reach the maximum height?
c. How long does it take for the ball to hit the ground?

Algebra I

9.3 Solving Quadratic Equations

Objective: To solve quadratic equations by graphing and using square roots

KEY CONCEPT

The quadratic equation $a x^{2}+b x+c=0$ can have \qquad real solutions. These solutions are called \qquad or \qquad or \qquad .

The solutions are also the \qquad of the graph.

Example 1 For each graph name the solution(s).

Example 2 Solve each equation by GRAPHING the function.
$x^{2}-1=0$
$a=\ldots, b=$ \qquad , $\mathrm{c}=$ \qquad

Axis of Symmetry:

Vertex:

y-intercept:
SOLUTION: \qquad

Find another point:

Example 3 Solve each equation by GRAPHING the function.

$$
2 x^{2}-8=0
$$

$\mathrm{a}=$ \qquad , $b=$ \qquad $\mathrm{c}=$ \qquad

Axis of Symmetry:

Vertex:

y-intercept:
SOLUTION: \qquad

Find another point:

LIST THE PERFECT SQUARES:

Review of Reducing Square Roots:

1. $\sqrt{32}$
2. $\sqrt{75}$
3. $\sqrt{68}$
4. $\sqrt{405}$

Example 3 Solve each equation by finding SQUARE ROOTS.
a) $x^{2}=36$
b) $5 p^{2}-45=0$
c) $9 m^{2}-25=0$
d) $3 n^{2}+12=0$
e) $72-9 n^{2}=0$
f) Find the length of a square with area $72 \mathrm{~m}^{2}$.

Algebra I Notes

9.4 Solving Quadratic Equations

Objective: To solve quadratic equations by factoring.

Warm-Up

a.

b.

c.

d. Solve $2 x^{2}-50=0$

Axis of Symmetry: \qquad
Vertex: \qquad
\# of Solutions: \qquad

Solutions: \qquad

Axis of Symmetry: \qquad
Vertex: \qquad
\# of Solutions: \qquad

Solutions: \qquad

Axis of Symmetry: \qquad

Vertex: \qquad
\# of Solutions: \qquad

Solutions: \qquad

ZERO PRODUCT PROPERTY

For any real numbers a and b, if $\boldsymbol{a} \cdot \boldsymbol{b}=\mathbf{0}$, then $\boldsymbol{a}=\mathbf{0}$ or $\boldsymbol{b}=\mathbf{0}$.

Example 1 Use the Zero-Product Property to solve each equation.
a. $(4 x+5)(x-3)=0$
b. $5 n(n+2)=0$

\#1 RULE OF FACTORING:

Example 2 Solve each by factoring.
a. $x^{2}+4 x-32=0$
b. $m^{2}-4 m=21$

Example 3 Solve each by factoring.
a. $x^{3}-10 x^{2}+24 x=0$
b. $3 a^{2}+33 a=-30$

Example 4 Solve each by factoring.
a. $3 x^{2}+4 x-15=0$
b. $2 n^{2}=13 n+7$
c. $4 m^{2}-8 m=-3$
d. $8 p^{2}-14 p+3=0$

Example 5 Application Problem

The area of a rectangular garden is $350 \mathrm{ft}^{2}$. The length of the garden is 11 feet longer than the width. What are the dimensions of the garden?

Algebra I

9.6 The Quadratic Formula and the Discriminant

Objective: To solve quadratic equations using the quadratic formula.
To find the number of solutions of a quadratic equation.

Warm-Up Solve by factoring.

1) $(4 x+5)(x-3)=0$
2) $3 m^{2}+m=14$

Key Concept Quadratic Formula

Algebra
If $a x^{2}+b x+c=0$, and $a \neq 0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example
Suppose $2 x^{2}+3 x-5=0$. Then $a=2, b=3$, and $c=-5$. Therefore

$$
x=\frac{-(3) \pm \sqrt{(3)^{2}-4(2)(-5)}}{2(2)}
$$

Discriminant's Value	\# and Nature of Solutions	Possible Graph

Solve using the Quadratic Formula.

Find the discriminant, determine the nature of the roots, solve.

Solve using the Quadratic Formula.
Find the discriminant, determine the nature of the roots, solve.

Application Problem

Example 5 A ball is thrown up into the air and its height is represented by the equation $h=-d^{2}+10 d+5$. How far away does the ball land on the ground?

Choosing the Best Method for Solving a Quadratic Equation:

Method
Graphing
Square roots
Factoring
Completing the square

Quadratic formula

When to Use
Use if you have a graphing calculator handy.
Use if the equation has no x-term.
Use if you can factor the equation easily.
Use if the coefficient of x^{2} is 1 , but you cannot easily factor the equation.
Use if the equation cannot be factored easily or at all.

Example 6 Which method(s) would you choose to solve each equation? Justify your reasoning.
a) $h^{2}+4 h+7=0$
b) $a^{2}-4 a-12=0$
c) $a^{2}-144=0$
d) $24 m^{2}-11 m-14=0$

Algebra I

Name \qquad CHAPTER 9 REVIEW

Write the Quadratic Equation:

\qquad

How does the " a " value affect the graph? \qquad

How does the " c " value affect the graph? \qquad

Example 1 Graph the quadratic equation $y=x^{2}-4$

\mathbf{x}	$\mathbf{y}=\mathbf{x}^{2}-\mathbf{4}$	\mathbf{y}
-2		
-1		
0		
1		
2		

Vertex: \qquad
Max/Min: \qquad
Axis of Symmetry: \qquad
Width: \qquad
Domain: \qquad
Range: \qquad

Example 2 Consider the quadratic equations and label by width.
a. $y=\frac{1}{4} x^{2}, y=\frac{1}{10} x^{2}$
b. $y=-5 x^{2}, y=-2 x^{2}$

Wider graph: \qquad Wider graph: \qquad

Narrower graph: \qquad

Example 3 State the number and nature of the roots and state the solution for each.

The four methods we discussed to solve a quadratic equation include:
1.
2.
3.
4.

Example 4 Solve by using square roots.
a. $x^{2}=49$
b. $4 n^{2}-12=0$
c. $-5 p^{2}+20=0$

Example 5 Solve by factoring.
a. $a^{2}-2 a=24$
b. $2 x^{2}+5 x=3$

Example 6 State the quadratic formula: \qquad
State the discriminant:
Example 7 State the number and nature of the solution.
a. $b^{2}-4 a c>0$
b. $b^{2}-4 a c=0$
c. $b^{2}-4 a c<0$

Example 8 Solve $x^{2}-8 x=-12$ using the quadratic formula.
$\mathrm{a}=$ \qquad $b=$ \qquad c $=$ \qquad
Discriminant's Value:
Solution:

Example 9 Consider the equation $\mathrm{y}=\mathrm{x}^{2}+6 \mathrm{x}+8$.
a. Solve by graphing. $a=$ \qquad b= \qquad , $\mathrm{c}=$ \qquad

Axis of Symmetry:

Vertex:

y-intercept:
Solution: \qquad
b. Solve by factoring.
c. Solve by the quadratic formula.

