Algebra I Notes

9.1 Quadratic Graphs and Their Properties

	Vertex: Max/Min:
	Axis of Symmetry:
	Domain: Range:
5 4 3 2	Vertex: Max/Min:
-3 -2 -1 1 2 3 4 5 6 7 x	Axis of Symmetry:
-2	Domain:
-4	Range:

Example 1 Graph $y = x^2$. This is referred to as the "parent graph."

Example 2 Graph $y = \frac{1}{4}x^2$. How do you think this graph compares to the parent graph?

Vertex:
Max/Min:
Axis of Symmetry:
Width:
Domain:
Range:

Example 4 Order each set of functions from the widest to the narrowest function.

a)
$$y = -3x^2$$
, $y = -5x^2$, $y = -x^2$
b) $y = \frac{1}{6}x^2$, $y = \frac{1}{4}x^2$, $y = \frac{1}{2}x^2$

Example 5 Graph each function of the form $y = ax^2 + c$

a)
$$y = x^2 - 3$$
 b) $y = -3$

b)
$$y = -\frac{1}{2}x^2 + 3$$

14

4

How does the "a" value affect the graph?

How does the "c" value affect the graph?

Example 6 Match each function with its graph.

Algebra I

9.2 Quadratic Functions

Objective: To graph quadratic functions in the form $y = ax^2 + bx + c$

Range:

<u>NOTE:</u> The axis of symmetry is in the equation $y = ax^2 + bx + c$ is:______

Example 1 Graph $y = x^2 - 6x + 4$ without using a table.

a=_____, b=_____, c=_____

Axis of Symmetry:

Vertex:

y-intercept:

Example 2 Graph $y = -x^2 + 2x - 5$ without using a table.

a=_____, b=_____, c=_____

Axis of Symmetry:

Vertex:

y-intercept:

Example 3

A baseball player hit a ball with an upward velocity of 64 feet/sec. Its height h in feet after t seconds is given by the function $h(t) = -16t^2 + 64t + 6$.

a. What is the maximum height the ball reaches?

b. How long will it take the baseball to reach the maximum height?

c. How long does it take for the ball to hit the ground?

Algebra I

9.3	Solving	Quadratic	Equations
-----	---------	-----------	-----------

Objective: To solve quadratic equations by graphing and using square roots

KEY CONCEPT	
The guadratic equation $ax^2 + bx + c = 0$ can have	ave real solutions.
These solutions are called	or or .
The solutions are also the	of the graph.

Example 1 For each graph name the solution(s).

Example 2 Solve each equation by <u>*GRAPHING*</u> the function.

 $x^2 - 1 = 0$ a = ___, b = ____, c = ____

Axis of Symmetry:

Vertex:

y-intercept:

SOLUTION:

Find another point:

Example 3 Solve each equation by <u>*GRAPHING*</u> the function.

y-intercept:

SOLUTION: _____

Find another point:

LIST THE PERFECT SQUARES:

Review of Reducing Square Roots:

1. $\sqrt{32}$ 2. $\sqrt{75}$ 3. $\sqrt{68}$ 4. $\sqrt{405}$

Example 3 Solve each equation by finding <u>SQUARE ROOTS</u>.

a) $x^2 = 36$ b) $5p^2 - 45 = 0$

c)
$$9m^2 - 25 = 0$$
 d) $3n^2 + 12 = 0$

e) $72 - 9n^2 = 0$ f) Find the length of a square with area 72 m^2 .

Algebra I Notes

9.4 Solving Quadratic Equations

Objective: To solve quadratic equations by factoring.

<u>Warm-Up</u>

a.	4	Axis of Symmetry:
		Vertex:
	-5 /1 -3 -2 -1 /1 -2	# of Solutions:
		Solutions:
b.	s] ^y /	Axis of Symmetry:
		Vertex:
		# of Solutions:
	-1 1 2 3	Solutions:
c.	4 1	Axis of Symmetry:
	3+	Vertex:
		# of Solutions:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Solutions:
	21	

d. Solve $2x^2 - 50 = 0$

ZERO PRODUCT PROPERTY For any real numbers a and b, if $a \cdot b = 0$, then a = 0 or b = 0.

Example 1 Use the Zero-Product Property to solve each equation.

a. (4x+5)(x-3) = 0b. 5n(n+2) = 0

#1 RULE OF FACTORING:

Example 2 Solve each by factoring.

a. $x^2 + 4x - 32 = 0$ b. $m^2 - 4m = 21$

Example 3 Solve each by factoring.

Example 4 Solve each by factoring.

a.
$$3x^2 + 4x - 15 = 0$$

b. $2n^2 = 13n + 7$

c. $4m^2 - 8m = -3$

d. $8p^2 - 14p + 3 = 0$

Example 5 Application Problem

The area of a rectangular garden is $350 ft^2$. The length of the garden is 11 feet longer than the width. What are the dimensions of the garden?

Algebra I

9.6 The Quadratic Formula and the Discriminant

Objective: To solve quadratic equations using the quadratic formula. To find the number of solutions of a quadratic equation.

Discriminant's Value	# and Nature of Solutions	Possible Graph

Solve using the Quadratic Formula. Find the discriminant, determine the nature of the roots, solve.

1) $2x^2 - 6x + 4 = 0$	2) $6m^2 + m + 12 = 0$
a =, b =, c =	a =, b =, c =
Discriminant's Value:	Discriminant's Value:
#/Nature of Roots:	#/Nature of Roots:
Solution:	Solution:

Solve using the Quadratic Formula. Find the discriminant, determine the nature of the roots, solve.

Application Problem

Example 5 A ball is thrown up into the air and its height is represented by the equation $h = -d^2 + 10d + 5$. How far away does the ball land on the ground?

Choosing the Best Method for Solving a Quadratic Equation:

Method	When to Use
Graphing	Use if you have a graphing calculator handy.
Square roots	Use if the equation has no <i>x</i> -term.
Factoring	Use if you can factor the equation easily.
Completing the square	Use if the coefficient of x^2 is 1, but you cannot easily factor the equation.
Quadratic formula	Use if the equation cannot be factored easily or at all.

Example 6 Which method(s) would you choose to solve each equation? Justify your reasoning.

a)
$$h^2 + 4h + 7 = 0$$

b) $a^2 - 4a - 12 = 0$

c)
$$a^2 - 144 = 0$$
 d) $24m^2 - 11m - 14 = 0$

Algebra I

CHAPTER 9 REVIEW

Name_____

Write the Quadratic Equation: _____

How does the "a" value affect the graph?_____

How does the "c" value affect the graph?_____

Example 1 Graph the quadratic equation $y = x^2 - 4$

х	$y = x^2 - 4$	У	*	Vertex:
-2				Max/Min:
-1				Axis of Symmetry:
0				Width:
1				Domain:
2				Range:

Example 2 Consider the quadratic equations and label by width.

a. $y = \frac{1}{4}x^2$, $y = \frac{1}{10}x^2$

Wider graph:_____

Narrower graph:_____

b. $y = -5x^2$, $y = -2x^2$

Wider graph:_____

Narrower graph:_____

Example 3 State the *number and nature of the roots* and *state the solution* for each.

The *four* methods we discussed to solve a quadratic equation include:

- 1.
- 2.
- 3.
- 4.

Example 4 Solve by using square roots.

|--|

Example 5 Solve by factoring.

a. $a^2 - 2a = 24$ b.	$2x^2$	+ 5	5x =	: 3
-----------------------	--------	-----	------	-----

Example 6	State the quadratic formula:		
	State the discriminant:		
Example 7	State the number and nature of the solution.		
a. $b^2 - 4ac$	- > 0		
b. $b^2 - 4ac$	c = 0		
c. $b^2 - 4ac$	< 0		
Example 8 Solve $x^2 - 8x = -12$ using the quadratic formula.			

a = _____, b = _____, c = _____

Discriminant's Value:

Solution:

#/Nature of Roots:

<u>Example 9</u>	Consider the equ	uation $y = x^2$	+ 6x + 8.
------------------	------------------	------------------	-----------

y-intercept:

Solution:_____

b. Solve by *factoring*.

c. Solve by the *quadratic formula*.