ALGEBRA 1 - CHAPTER 7 NOTES RULES OF EXPONENTS

PROPERTY	RULE	EXAMPLE
Zero Exponent		
Negative Exponent		
Product Rule		
Power to a Power		
Product to a Power		
Quotient Rule		
Quotient to a Power		

ALGEBRA 1 - CHAPTER 7 NOTES RULES OF EXPONENTS

PROPERTY	RULE	EXAMPLE
Zero Exponent		
Negative Exponent		
Product Rule		
Power to a Power		
Product to a Power		
Quotient Rule		
Quotient to a Power		

ALGEBRA 1

7.1 Zero and Negative Exponents

Objectives: To simplify expressions with	n zero and negative exponents	
Warm IIn Simplify each expressio	n without using a calculator!	
1. 2 ³	2. $(-2)^3$	3. -2^3
4. $\frac{1}{4^2}$	5. $4^2 \div 2^2$	6. $6^2 \div 12$
Evaluate each expression for a = 2, 7. $\frac{a}{2b}$	$b = -1 \text{ and } c = \frac{1}{2}$ $8. \frac{ab}{c}$	9. $\frac{ac}{b}$

Example 1: Fill in the chart with the value of the power in standard form.

x	2^x	5 ^x
4		
3		
2		
1		
0		
-1		
-2		

b) What pattern do you see as you go down each column?

The patterns that you found illustrate the definitions of zero and negative exponents.

PROPERTY	EXAMPLE 1	EXAMPLE 2	EXAMPLE 3
Zero Exponent	8 ⁰	(-5) ⁰	(1 . 043) ⁰
Negative Exponent	7 ⁻²	$(-2)^{-3}$	$(4)^{-1}$

RULES:

Zero Exponent Rule:_____

Negative Exponent Rule:_____

PRACTICE: Simplify each expression **without** negative exponents.

a) 9^{-2} b) $(-3.6)^0$ c) 3^{-3} d) -7^0 e) $(-4)^{-2}$

Example 2: Simplify each expression **<u>without</u>** negative exponents.

a) $4x^{-3}y$ b) $\frac{1}{w^{-4}}$ c) $-7s^{-4}t^2$ d) $\frac{n^{-5}}{v^2}$ e) s^0r^{-3}

Example 3: Simplify each expression **<u>without</u>** negative exponents.

a) $5a^{3}b^{-2}$ b) $\frac{y^{0}}{x^{-5}}$ c) $4^{-2}bc^{-3}$ d) $\frac{6}{2a^{-3}}$ e) $\frac{2n^{-5}}{3^{-1}m^{2}}$

Evaluating an Exponential Expression:

Always simplify the expression before substituting values in for the variables

Example 4:

Example 5: Evaluate $\frac{n^{-1}}{w^2}$ for n = -2 and w = 5

Evaluate $3m^2t^{-2}$ for m = 2 and t = -3

<u>PRACTICE</u>: Evaluate each expression for n = -2 and w = 5

a) $n^{-3}w^0$ b) $\frac{n^{-3}}{w^2}$

c)
$$\frac{-w^0}{n^4}$$
 d) $\frac{-2}{nw^{-2}}$

Using an Exponential Expression:

Example 6: A population of marine bacteria doubles every hour under controlled laboratory conditions. The number of bacteria is modeled by the expression $1000 \cdot 2^h$, where h is the number of hours after a scientist measures the population size. Evaluate the expression for h=0 and h= -3. What does each value of the expression represent in the situation?

Example 7: A population of insects triples every week. The number of insects is modeled by the expression $5400 \cdot 3^w$, where w is the number of weeks after the population was measured. Evaluate the expression for w= -2, w= 0, and w = 1. What does the value of the expression mean in the situation?

ALGEBRA I NOTES

7.2 & 7.3 Multiplication Properties of Exponents

Objectives: To multiply powers with the same base. To raise a power to a power.

<u>Warm-Up</u> :			
Negative Exponent Ru	ıle:		
Zero Exponent Rule:_			
Simpify <u>WITHOUT</u> ne	egative exponents.		
$1. \frac{1}{x^{-2}y^5}$	2. —9 ⁰	3. $5m^{-3}n^{-1}$	4. $\frac{a^{-4}}{b^2 c^0}$

1. Expand x^7 (Write out what it means)

Expand and simplify.

2. $m^4 \cdot m^3$ 3. $(p^4)^3$

4. $(2x^3y^2)^2$

Multiplying Powers with the Same Base For every nonzero number a and integers m and n
Raising a Power to a Power For every nonzero number a and integers m and n
Raising a Product to a Power For every nonzero number a and b and integer n

Multiplying Powers in Algebraic Expressions:

When variable factors have more than one base, combine powers with the same base.

Example 1: Simplify $4x^5 \cdot 9x^{-12}$

Example 2: Simplify $2a \cdot 9b^4 \cdot 3a^2$

Example 3: Simplify each expression *without* negative exponents.

a. $m^4 \cdot 2m^{-3}$ b. $-4c^3 \cdot 7d^2 \cdot 2c^{-2}$

c. $(2x^3y^{-3})(2x^{-1}y^3)$ d. $(4a^3b^2)(3a^{-4}b^{-5})$

Example 4: Simplify each expression <u>without</u> negative exponents.

a. $5x^4 \cdot x^9 \cdot 3x$ b. $(5m^5)(2mn^4)(8m^3)$

c. $j^2 \cdot 3k^{-2} \cdot -12j$ d. $(-7a^{-5}b)(-4a^8b^{-2})$

Example 5: Simplify each expression <u>without</u> negative exponents.

a. $(n^4)^7$ b. $(x^{-2})^3$

c. $(4xy^2)^3$ d. $(-5m^3n^{-4})^2$

Example 6: Simplify each expression <u>without</u> negative exponents.

a.
$$(3b^4)^{-2}$$
 b. $(5x^2y)^{-3}$

c.
$$(3m^{-2}n)^{-2}$$
 d. $(2a^{-3}b)^{-4}$

Example 7: Simplify each expression <u>without</u> negative exponents.

a.
$$(x^{-2})^2 (3xy^2)^4$$
 b. $(2x^{-6})^4 \cdot 2^{-3}x^{14}$

c.
$$(2k^5)^3(2k^{-4})$$
 d. $(-4a^3b)^2(2a^{-2}b^{-3})$

Example 8: Determine the value of the missing exponent.

a.
$$9^5 \cdot 9^{\bullet} = 9^{-2}$$

b. $(3x^2y^{\bullet})^3 = 27x^6y^{12}$

Algebra I

7.4 Division Properties of Exponents

Objectives: To divide powers with the same base; to raise a quotient to a power

Warm-Up:

1. Complete the exponential rule for each:

Zero Exponent: $a^0 =$	Negative Exponent: $a^{-1} =$
Product Rule: $a^m \cdot a^n =$	Power to a Power: $(a^m)^n =$
Product to a Power: $(ah)^n$ –	2 new rules today:
	Quotient to a Power Rule

Simplify without negative exponents.

2.
$$-3m^4 \cdot 2m^3 \cdot m^0$$
 3. $(-3p q^3)(4 p^{-2} q^5)$

4.
$$(-2a^3b^{-2})^2$$
 5. $(3x^{-1}y^2)^{-3}$

Example 1 Complete the table.

Standard Notation	Scientific Notation
22 000	
32,000	
0.0000157	
	1.25 x 10 ⁴
	5.7 x 10 ⁻³

Example 2 Simplify each expression in scientific notation.

a. $(8 \times 10^{-5})(2 \times 10^{8})$

b. $(0.2 x 10^{-7})(0.6 x 10^{-1})$

c.
$$\frac{(8.5 \times 10^3)}{(5 \times 10^5)}$$
 d. $\frac{(4.8 \times 10^{-1})}{(8 \times 10^{-6})}$

Rules of Exponents Involving Division
Dividing Powers with the Same Base For every nonzero number a and integers m and n
Raising a Quotient to a Power Property For every nonzero number a and b and integer n

Example 3 Simplify without negative exponents.

a.
$$\frac{2^6}{2^4}$$
 b. $\frac{n^5 m^3}{n^4 m^6}$ c. $\frac{16 x^{-4} y^3}{4 x^{-7} y^5}$

<u>Example 4</u> Simplify each expression.

a.
$$\left(\frac{2}{3}\right)^2$$
 b. $\left(\frac{x^4}{x}\right)^3$

c.
$$\left(\frac{4}{5}\right)^{-2}$$
 d. $(2 \times 10^{-4})^3$

Example 5 Simplify without negative exponents.

a.
$$\frac{-12 \, k^6 j^2}{6 \, k \, j^5}$$
 b.
$$\frac{18 \, x^5 \, y^{-1} \, z^{-8}}{9 \, x^4 \, y^{-5} \, z^{-3}}$$

c.
$$\left(\frac{8 x^6 y^2}{2 x^4 y^4}\right)^{-3}$$
 d. $\left(\frac{-5 x y^2}{5 x^2 y^{-3}}\right)^{-2}$

e.
$$\frac{(2x^2)}{(3y^4)} \cdot \frac{(3x)}{(-5y^3)}$$
 f. $\frac{(4ab)}{(-2a)} \cdot \frac{(9a^2)}{(6b^3)}$