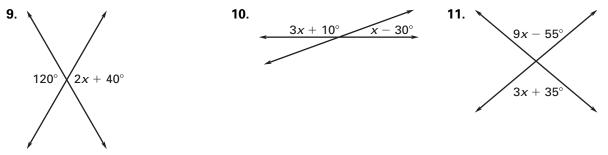

Name _____

Practice A

For use with pages 109-116

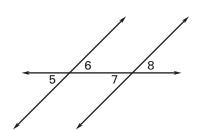
Use the diagram to decide whether the statement is *true* or *false*.


- **1.** If $m \angle 4 = 20^{\circ}$, then $m \angle 3 = 70^{\circ}$.
- **2.** If $m \angle 4 = 20^{\circ}$, then $m \angle 2 = 20^{\circ}$.
- **3.** $m \angle 4 + m \angle 2 = m \angle 3 + m \angle 1$
- 4. $m \angle 4 + m \angle 1 = m \angle 3 + m \angle 2$

Make a sketch of the given information. Label all angles which can be determined.

- **5.** Vertical angles which measure 40°
- Complementary angles where one angle measures 75°
- **6.** A linear pair where one angle measures 155°
- **8.** Supplementary angles where one angle measures 75°

12. Give a reason for each step of the proof. Choose from the list of reasons given.


Given: $\angle 1$ and $\angle 2$ are complementary. $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$ Prove: $\angle 3$ and $\angle 4$ are complementary.

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are complementary.	1 . Given
2. $m \angle 1 + m \angle 2 = 90^{\circ}$	2. ?
3. $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$	3. Given
4. $m \angle 1 = m \angle 3, m \angle 2 = m \angle 4$	4. ?
5. $m \angle 3 + m \angle 2 = 90^{\circ}$	5. <u>?</u>
6. $m \angle 3 + m \angle 4 = 90^{\circ}$	6. <u>?</u>
7. $\angle 3$ and $\angle 4$ are complementary.	7. ?

Reasons: Definition of complementary angles Definition of congruent angles Substitution Property of Equality

13. Write a two-column proof.

Given: $\angle 6 \cong \angle 7$ Prove: $\angle 5 \cong \angle 8$ Plan for Proof: First show that $\angle 5 \cong \angle 6$ and $\angle 7 \cong \angle 8$. Then use transitivity to show that $\angle 5 \cong \angle 8$.

Lesson 2.6

Date