3. a. $\operatorname{Pr}(E \mid F)=\frac{0.1}{0.4}=\frac{1}{4}$
b. $\operatorname{Pr}(F \mid E)=\frac{0.1}{0.5}=\frac{1}{5}$
c. $\operatorname{Pr}\left(E \mid F^{\prime}\right)=\frac{0.4}{0.6}=\frac{2}{3}$
d. $\operatorname{Pr}\left(E^{\prime} \mid F^{\prime}\right)=\frac{0.2}{0.6}=\frac{1}{3}$
4. a. $\quad \operatorname{Pr}(F \mid E)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(E)}$

$$
0.25=\frac{\operatorname{Pr}(E \cap F)}{0.4}
$$

$$
\operatorname{Pr}(E \cap F)=0.1
$$

b. $\operatorname{Pr}(E \cup F)=0.4+0.3-0.1=0.6$
c. $\operatorname{Pr}(E \mid F)=\frac{0.1}{0.3}=\frac{1}{3}$
d. $\operatorname{Pr}\left(E^{\prime} \cap F\right)=0.3-0.1=0.2$
9. $\operatorname{Pr}(8 \mid$ not 7$)=\frac{\operatorname{Pr}(8 \cap \text { not } 7)}{\operatorname{Pr}(\text { not } 7)}$
$\operatorname{Pr}(8 \mid$ not 7$)=\frac{\frac{5}{36}}{\frac{30}{36}}$
$\operatorname{Pr}(8 \mid$ not 7$)=\frac{5}{30}=\frac{1}{6}$
11. 0 ; because exactly one coin shows heads therefore there are two tails.
13. $\frac{\text { [number of outcomes that four are white] }}{\text { [number of outcomes that at least } 1 \text { is white] }}$

$$
\begin{aligned}
\frac{C(7,4)}{C(12,4)-C(5,4)} & =\frac{35}{495-5} \\
& =\frac{35}{490} \\
& =\frac{1}{14} \approx 0.0714
\end{aligned}
$$

14. $\frac{\text { [number of outcomes that two are white] }}{\text { [number of outcomes that at least } 1 \text { is white] }}$

$$
\begin{aligned}
& =\frac{C(2,2)}{C(5,2)-C(3,2)} \\
& =\frac{1}{10-3} \\
& =\frac{1}{7} \approx 0.1429
\end{aligned}
$$

