## MATH 1500/MATH1551

Section 5.3 HW Solutions: 1, 3, 9, 11, 13, 15, 31, 49, 51

1. $5+6=11$
2. $6+5+15+20=46$
3. $10+5+15=30$
4. $n\left(S \cap T^{\prime}\right)=n(S)-n(S \cap T)=12-5=7$
$n\left(S^{\prime} \cap T\right)=n(T)-n(S \cap T)=7-5=2$
$n(S \cup T)=n(S)+n(T)-n(S \cap T)$

$$
=7+2+5=14
$$

$n\left(S^{\prime} \cap T^{\prime}\right)=n(U)-n(S \cup T)=17-14=3$

13. $n(S \cap T)=n(S)+n(T)-n(S \cup T)$

$$
=12+14-18=8
$$

$n\left(S \cap T^{\prime}\right)=n(S)-n(S \cap T)=12-8=4$
$n\left(S^{\prime} \cap T\right)=n(T)-n(S \cap T)=14-8=6$
$n\left(S^{\prime} \cap T^{\prime}\right)=n(U)-n(S \cup T)=20-18=2$

15. $n(S \cup T)=n(U)-n\left(S^{\prime} \cap T^{\prime}\right)=75-40=35$
$n(S \cap T)=n(S)+n(T)-n(S \cup T)=15+25-35=5$
$n\left(S \cap T^{\prime}\right)=n(S)-n(S \cap T)=15-5=10$
$n\left(S^{\prime} \cap T\right)=n(T)-n(S \cap T)=25-5=20$

31. Let $U=$ \{students in finite math \},
$M=$ \{male students $\}, B=$ \{students who are business majors $\}$, and $F=$ \{first-year students $\}$.

$$
n(U)=35 ; n(M)=22 ; n(B)=19 ; n(F)=27 ;
$$

$$
n(M \cap B)=14 ; n(M \cap F)=17
$$

$$
n(B \cap F)=15 ; n(M \cap B \cap F)=11
$$

a. Draw a Venn diagram as shown.

b. $\quad n\left(F^{\prime} \cap M^{\prime} \cap B^{\prime}\right)=2$

There are two upperclass women nonbusiness majors.
c. $\quad n\left(M^{\prime} \cap B\right)=1+4=5$

There are five women business majors.
49. $L \cup S \cup F^{\prime}=4000-250=3750$
51. Let $U=$ \{college students surveyed \},
$F=\{$ first-year students $\}$,
$D=\{$ voted Democratic $\}$,
$n(U)=100 ; n(F)=50 ; n(D)=55$
$n\left(F^{\prime} \cap D^{\prime}\right)=n\left((F \cup D)^{\prime}\right)=25$
$n(F \cup D)=n(U)-n\left((F \cup D)^{\prime}\right)=100-25=75$
$n(F \cap D)=n(F)+n(D)-n(F \cup D)$
$=50+55-75$
$=30$
30 freshmen voted Democratic.

