Algebra I

Name: _____

Chapter 5 Test Stud	dy Guide
---------------------	----------

	SHOW ALL YOUR WORK
<u>Formulas:</u>	
Slope:	
Slope-Intercept:	
Point-Slope:	
a	
Standard:	

<u>Directions</u>: Find the slope given two points. Use the slope formula! Show your work and reduce fractions!

1.)	(4, -6), (2, -8)) 2.) $(3, -4), (3, 6)$) 3.)	(2.5).(-8.5)
,	$(1) \circ (1) = (1) \circ (1)$	------------	, oj		

<u>Directions</u>: State whether the slope is 0 or undefined.

4.) A vertical line has a(n) ______ slope.

5.) A horizontal line has a(n) ______ slope.

Directions: Identify the slope and y-intercept from each equation. (*HINT: make sure equation is in slope intercept form*)

7.) y = 4x - 5 **8.**) -3x + y = 4 **9.**) $y + 4 = \frac{1}{3}x + 1$

<u>Directions</u>: Write an equation for the line in slope-intercept form.

10.) m = 2, b = 3 **11.)** (0, -5), m = -3 **12.)** (1,7), m = 3

<u>Directions</u>: Find the *x*- and *y*-intercepts (in coordinate point form) of each equation

13.) *x* + 3*y* = -6 x-intercept: _____ y-intercept: _____ work: **14.)** -2x + 4y = 12x-intercept: _____ y-intercept: _____ work:

<u>Directions</u>: Write the following equations in <u>Standard Form</u> using *integers*.

15.)
$$y = \frac{1}{4}x + 4$$
 16.) $y = -\frac{3}{4}x - 4$

<u>Directions</u>: Tell whether the lines for each pair of equations are <u>parallel</u>, <u>perpendicular</u>, <u>or neither</u>. EXPLAIN.

17.)
$$y = 3x - 8$$

 $3x - y = -1$
18.) $3x + 2y = -5$
 $y = \frac{2}{3}x + 6$
19.) $y = \frac{5}{2}x + 11$
 $-5x + 2y = 20$

<u>Directions</u>: Write an equation in slope-intercept form for a line that is <u>parallel</u> to the given line and passes through the given point.

20.)
$$y = 2x - 7$$
; (3,4)

<u>Directions</u>: Write an equation in slope-intercept form for a line that is <u>perpendicular</u> to the given line and passes through the given point.

21.)
$$y = 3x - 2; (6,4)$$

<u>Directions</u>: Graph the following lines.

22.) *y* = −5

25.) *x* = 3

Directions: Use the map to answer the questions. Show all your work!

- a.) What is the slope of the line representing Fir Street?
- **b.)** Show that Poplar Avenue and Elm Street are NOT perpendicular. *Show your work AND explain.* (*HINT: Find the slope of the 2 lines first*)

c.) Are Fir Street and Elm Street parallel? *Show your work AND explain.* (*HINT: Find the slope of the 2 lines first*)

*** You will also have questions relating back to material from Chapters 2 and 3.***