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A Teacher’s Guide to Using the
Chapter 3 Resource Masters

The Fast File Chapter Resource system allows you to conveniently file the
resources you use most often. The Chapter 3 Resource Masters include the core
materials needed for Chapter 3. These materials include worksheets, extensions,
and assessment options. The answers for these pages appear at the back of this

booklet.

All of the materials found in this booklet are included for viewing and printing in
the Advanced Mathematical Concepts Teacher Works CD-ROM.

Vocabulary Builder Pages vii-x include a
student study tool that presents the key
vocabulary terms from the chapter. Students are
to record definitions and/or examples for each
term. You may suggest that students highlight or
star the terms with which they are not familiar.

When to Use Give these pages to students
before beginning Lesson 3-1. Remind them to
add definitions and examples as they complete
each lesson.

Study Guide There is one Study Guide
master for each lesson.

When to Use Use these masters as
reteaching activities for students who need
additional reinforcement. These pages can also
be used in conjunction with the Student Edition
as an instructional tool for those students who
have been absent.

© Glencoe/McGraw-Hill

Practice There is one master for each lesson.
These problems more closely follow the
structure of the Practice section of the Student
Edition exercises. These exercises are of
average difficulty.

When to Use These provide additional
practice options or may be used as homework
for second day teaching of the lesson.

Enrichment There is one master for each
lesson. These activities may extend the concepts
in the lesson, offer a historical or multicultural
look at the concepts, or widen students’
perspectives on the mathematics they are
learning. These are not written exclusively

for honors students, but are accessible for use
with all levels of students.

When to Use These may be used as extra
credit, short-term projects, or as activities for
days when class periods are shortened.

Advanced Mathematical Concepts



Assessment Options

The assessment section of the Chapter 3
Resources Masters offers a wide range of
assessment tools for intermediate and final
assessment. The following lists describe each
assessment master and its intended use.

Chapter Assessments

Chapter Tests

o [Forms 14, 1B, and 1C Form 1 tests contain
multiple-choice questions. Form 1A is
intended for use with honors-level students,
Form 1B is intended for use with average-
level students, and Form 1C is intended for
use with basic-level students. These tests
are similar in format to offer comparable
testing situations.

o Forms 24, 2B, and 2C Form 2 tests are
composed of free-response questions. Form
2A 1is intended for use with honors-level
students, Form 2B is intended for use with
average-level students, and Form 2C is
intended for use with basic-level students.
These tests are similar in format to offer
comparable testing situations.

All of the above tests include a challenging
Bonus question.

o The Extended Response Assessment
includes performance assessment tasks that
are suitable for all students. A scoring
rubric is included for evaluation guidelines.
Sample answers are provided for
assessment.

© Glencoe/McGraw-Hill

Intermediate Assessment

A Mid-Chapter Test provides an option to
assess the first half of the chapter. It is
composed of free-response questions.

Four free-response quizzes are included to
offer assessment at appropriate intervals in
the chapter.

Continuing Assessment

The SAT and ACT Practice offers
continuing review of concepts in various
formats, which may appear on standardized
tests that they may encounter. This practice
includes multiple-choice, quantitative-
comparison, and grid-in questions. Bubble-
in and grid-in answer sections are provided
on the master.

The Cumulative Review provides students
an opportunity to reinforce and retain skills
as they proceed through their study of
advanced mathematics. It can also be used
as a test. The master includes free-response
questions.

Answers

Page A1 is an answer sheet for the SAT and
ACT Practice questions that appear in the
Student Edition on page 203. Page A2 is an
answer sheet for the SAT and ACT Practice
master. These improve students’ familiarity
with the answer formats they may
encounter in test taking.

The answers for the lesson-by-lesson
masters are provided as reduced pages with
answers appearing in red.

Full-size answer keys are provided for the
assessment options in this booklet.

Advanced Mathematical Concepts



Chapter 3 Leveled Worksheets

Glencoe’s leveled worksheets are helpful for meeting the needs of every
student in a variety of ways. These worksheets, many of which are found
in the FAST FILE Chapter Resource Masters, are shown in the chart
below.

« Study Guide masters provide worked-out examples as well as practice
problems.

« Each chapter’s Vocabulary Builder master provides students the
opportunity to write out key concepts and definitions in their own
words.

« Practice masters provide average-level problems for students who
are moving at a regular pace.

« Enrichment masters offer students the opportunity to extend their
learning.

Five Different Options to Meet the Needs of
Every Student in a Variety of Ways

primarily skills
primarily concepts

primarily applications

BASIC AVERAGE ADVANCED

© Study Guide

® Vocabulary Builder

3 Parent and Student Study Guide (online)

5 Enrichment

© Glencoe/McGraw-Hill vi Advanced Mathematical Concepts



NAME DATE PERIOD

Reading to Learn Mathematics
Vocabulary Builder

This is an alphabetical list of the key vocabulary terms you will learn in Chapter 3.
As you study the chapter, complete each term’s definition or description.
Remember to add the page number where you found the term.

Found

on Page Definition/Description/Example

Vocabulary Term

absolute maximum

absolute minimum

asymptotes

constant function

constant of variation

continuous

critical point

decreasing function

direct variation

discontinuous

(continued on the next page)
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NAME DATE PERIOD

Reading to Learn Mathematics
Vocabulary Builder (continued)

Found

on Page Definition/Description/Example

Vocabulary Term

end behavior

even function

everywhere discontinuous

extremum

horizontal asymptote

horizontal line test

image point

increasing function

infinite discontinuity

inverse function

inverse process

(continued on the next page)
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NAME DATE PERIOD

Reading to Learn Mathematics
Vocabulary Builder (continued)

Found

on Page Definition/Description/Example

Vocabulary Term

inversely proportional

inverse relations

inverse variation

jump discontinuity

line symmetry

maximum

minimum

monotonicity

odd function

parent graph

point discontinuity

(continued on the next page)
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NAME DATE PERIOD

Reading to Learn Mathematics

Vocabulary Builder (continued)

Found

on Page Definition/Description/Example

Vocabulary Term

point of inflection

point symmetry

rational function

relative extremum

relative maximum

relative minimum

slant asymptote

symmetry with respect to the
origin

vertical asymptote

© Glencoe/McGraw-Hill X Advanced Mathematical Concepts
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Study Guide
Symmetry and Coordinate Graphs

One type of symmetry a graph may have is point symmetry. A
common point of symmetry is the origin. Another type of
symmetry is line symmetry. Some common lines of symmetry
are the x-axis, the y-axis, and the lines y = x and y = —x.
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Example 1 Determine whether f(x) = 23 is symmetric with
respect to the origin.

o

If f(—x) = —f(x), the graph has point symmetry. T

fl—x) = (—x)* —fx) = —a? 1

f(—x) = —x3 1

The graph of f(x) = x is symmetric with respect v

to the origin because f(—x) = —f(x).

Example 2 Determine whether the graph of x2 + 2 =y? is

symmetric with respect to the x-axis, the y-axis,

the line y = x, the line y = —x, or none of these.

Substituting (a, b) into the equation yields

a® + 2 = b2 Check to see if each test produces

an equation equivalent to a? + 2 = b2.

X-axis a? +2 = (—b)? Substitute (a, —b) into the equation.
a’+ 2 =052 Equivalent to a? + 2 = b?

y-axis (—a)? + 2= b2 Substitute (—a, b) into the equation.
a?+ 2 =052 Equivalent to a? + 2 = b?

y=x b2+ 2 =(a) Substitute (b, a) into the equation.
a?— 2 =102 Not equivalent to a® + 2 = b?

y=—x (=02 + 2 =(—a) Substitute (—b, —a) into the equation.
b2+ 2 =qa? Simplify.
a?—2=>b2 Not equivalent to a®? + 2 = b?

Therefore, the graph of x2 + 2 = y? is symmetric with respect to
the x-axis and the y-axis.

© Glencoe/McGraw-Hill 87 Advanced Mathematical Concepts



NAME DATE PERIOD

Practice

Symmetry and Coordinate Graphs

Determine whether the graph of each function is symmetric with respect
to the origin.

L fx)= =12 2. flx) =25 — 2
3. fx) = — 4o 4. flx) = 2

3 —x

Determine whether the graph of each equation is symmetric with respect to
the x-axis, the y-axis, the line y = x, the line y = —x, or none of these.

5.x+y=26 6. x2+y=2
7.xy =3 8. x3+y2=4
9.y =4x 10. y=x2—-1

11. Is f(x) = |x| an even function, an odd function, or neither?

Refer to the graph at the right for Exercises 12 and 13.

12. Complete the graph so that it is the graph fix)
of an odd function. 3,3) /
(‘h 2)
13. Complete the graph so that it is the graph 5 N -

of an even function.

14. Geometry Cameron told her friend Juanita y
that the graph of |y| = 6 — |3x| has the shape
of a geometric figure. Determine whether the
graph of |y| = 6 — |3x| is symmetric with
respect to the x-axis, the y-axis, both, or
neither. Then make a sketch of the graph. o) X
Is Cameron correct?

© Glencoe/McGraw-Hill 88 Advanced Mathematical Concepts



NAME DATE PERIOD

Enrichment

Symmetry in Three-Dimensional Figures
A solid figure that can be superimposed, point for

point, on its mirror image has a plane of symmetry. >
A symmetrical solid object may have a finite or I
infinite number of planes of symmetry. The chair in '
the illustration at the right has just one plane of N

’

symmetry; the doughnut has infinitely many “
planes of symmetry, three of which are shown.

Determine the number of planes of symmetry for each object and
describe the planes.

1. a brick
2. a tennis ball

3. a soup can

4. a square pyramid

5. a cube

Solid figures can also have rotational symmetry. For example, the
axis drawn through the cube in the illustration is a fourfold axis of |
symmetry because the cube can be rotated about this axis into four s
different positions that are exactly alike.

S

6. How many four-fold axes of symmetry does a cube have?
Use a die to help you locate them.

7. A cube has 6 two-fold axes of symmetry. In the space at the right,
draw one of these axes.

© Glencoe/McGraw-Hill 89 Advanced Mathematical Concepts
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Study Guide
Families of Graphs

A parent graph is a basic graph that is transformed to create other
members in a family of graphs. The transformed graph may appear in
a different location, but it will resemble the parent graph.

A reflection flips a graph over a line called the axis of symmetry.
A translation moves a graph vertically or horizontally.

A dilation expands or compresses a graph vertically or
horizontally.

Example 1 Describe how the graphs of f(x) = Vx and
gx) = V—x — 1 are related.

The graph of g(x) is a reflection of the graph of
f(x) over the y-axis and then translated down
1 unit.

Example 2 Use the graph of the given parent function
to sketch the graph of each related function.

a. flx)=x%y=x>+2

When 2 is added to the parent function, the
graph of the parent function moves up 2 units.

b. f(x) = [x]; y = 3[x] oo

The parent function is expanded vertically by a R

factor of 3, so the vertical distance between the - -
steps is 3 units. —
1 y=3I[x
M . .
c. flx)= |x|;y = 0.5 x|

When |x| is multiplied by a constant greater
than 0 but less than 1, the graph compresses :;44:
vertically, in this case, by a factor of 0.5. y=05]x |:*° x

d. fx) =x%y=|x2— 4]

The parent function is translated down 4 units
and then any portion of the graph below the
x-axis is reflected so that it is above the x-axis.

© Glencoe/McGraw-Hill 90 Advanced Mathematical Concepts



NAME DATE PERIOD

Practice

Families of Graphs

Describe how the graphs of f(x) and g(x) are related.
1. f(x) =x2and g(x) = (x + 3)2 — 1 2. f(x) = |x| and g(x) = — | 2«

Use the graph of the given parent function to describe the graph of each
related function.

3. f(x) = 8 4. f(x) = Vx
a.y=2x3 a.y=Vx+3+1
b. y = —0.5(x — 2)3 b.y=V—-x—-2
c.y= |G+ 13 c. y=V025x — 4

Sketch the graph of each function.

5. flx) = —(x — 12+ 1 6. fx)=2|x+2] -3
y y
0] X [o] X
f(X)

7. Consumer Costs During her free time, Jill baby-sits
the neighborhood children. She charges $4.50 for each
whole hour or any fraction of an hour. Write and graph
a function that shows the cost of x hours of baby-sitting.

0

0

© Glencoe/McGraw-Hill 91 Advanced Mathematical Concepts
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Enrichment
Isomorphic Graphs

A graph G is a collection of points in which a pair of points, called vertices, are
connected by a set of segments or arcs, called edges. The degree of vertex C, denoted
deg (C), is the number of edges connected to that vertex. We say two graphs are
isomorphic if they have the same structure. The definition below will help you
determine whether two graphs are isomorphic.

A graph G’ is isomorphic to a graph G if the following conditions hold.
1. G and G’ have the same number of vertices and edges.
2. The degree of each vertex in G is the same as the degree of each corresponding vertex in G”.

3. If two vertices in G are joined by k(k = 0) edges, then the two corresponding vertices in G’ are
also joined by k edges.

Example In the graphs below HIJKLMN < TUVWXYZ.
Determine whether the graphs are isomorphic.

L M v

K H
N

J ! "4 w
Number of vertices in G: 7 Number of vertices in G”: 7
Number of edges in G: 10 Number of edges in G”: 10
deg (H):3 deg():3 deg (T):1 deg(U):3
deg (J):3  deg(K):3 deg (V):3  deg(W):3
deg (L):4 deg(M):3 deg X):4 deg(Y):3
deg (N): 1 deg (Z): 3

Since there are the same number of vertices and the same number of edges
and there are five vertices of degree 3, one vertex of degree 4, and one
vertex of degree 1 in both graphs, we can assume they are isomorphic.

Each graph in Row A is isomorphic to one graph in Row B.
Match the graphs that are isomorphic.

Tz
B

T

© Glencoe/McGraw-Hill 92 Advanced Mathematical Concepts
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Study Guide
Graphs of Nonlinear Inequalities

Graphing an inequality in two variables identifies all ordered
pairs that satisfy the inequality. The first step in graphing
nonlinear inequalities is graphing the boundary.

Example 1 Graphy<Vx—3 + 2. y

The boundary of the inequality is the graph of y =Vx — 3 + 2.
To graph the boundary curve, start with the parent graph

y =Vx. Analyze the boundary equation to determine how the 0 "
boundary relates to the parent graph.
y=Vx—-3+2
T 17
move 3 units right  move 2 units up
Since the boundary is not included in the inequality, the y .
graph is drawn as a dashed curve. -

The inequality states that the y-values of the solution are i IR
less than the y-values on the graph of y =Vx — 3 + 2. o% x
Therefore, for a particular value of x, all of the points in the

plane that lie below the curve have y-values less than

Vx — 3 + 2. This portion of the graph should be shaded.

y

To verify numerically, test a point not on the boundary. PP g
y<Vax - 3+ 2 f
0< V4 -3+ 2 Replace (x,y) with (4, 0). o
0<3 Vv True JF
Since (4, 0) satisfies the inequality, the correct region is
shaded.
Example 2 Solve |x—3| —2>17.
Two cases must be solved. In one case, x — 3 is negative, and
in the other, x — 3 is positive.
Casel Ifa <O0,then |a| = —a. Case 2 Ifa > 0, then |a| =q.

—(x—-3)—-2>17 x—3—-2>17

—x+3-2>7 x—5>17
—-x>6 x> 12
x<—6

The solution set is {x |x < —6orx > 12}.

© Glencoe/McGraw-Hill 93 Advanced Mathematical Concepts
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Practice

Graphs of Nonlinear Inequalities

Determine whether the ordered pair is a solution for the given inequality.
Write yes or no.

Ly>@+22+3,(-2,6) 2.y<@x—3°%+24,5 3.y=|2x—4]|—1,(-4,1)

Graph each inequality.

4. y=2|x— 1| 5.y >2(x — 172
y y
(0] X [o) X

6.y <Vx—-2+1 7. y=(x + 3)3
y y
[0) X (0) X

Solve each inequality.

8. |4x—-10|=6 9. |[x+5|+2>6 10. [2x —2|—-1<7

11. Measurement Instructions for building a birdhouse warn that the
platform, which ideally measures 14.75 cm?, should not vary in size
by more than 0.30 cm?. If it does, the preconstructed roof for the
birdhouse will not fit properly.

a. Write an absolute value inequality that represents the range of
possible sizes for the platform. Then solve for x to find the range.

b. Dena cut a board 14.42 cm?. Does the platform that Dena cut fit
within the acceptable range?

© Glencoe/McGraw-Hill 94 Advanced Mathematical Concepts
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Enrichment

Some Parametric Graphs

For some curves, the coordinates x and y can be written as functions

of a third variable. The conditions determining the curve are given

by two equations, rather than by a single equation in x and y. The third
variable is called a parameter, and the two equations are called para-
metric equations of the curve.

For the curves you will graph on this page, the parameter is ¢ and
the parametric equations of each curve are in the form x = f(¢) and

y =g(@).

Example Graph the curve associated with the parametric
equations x = 48f and y = 64¢ — 16¢2.

Choose values for ¢ and make a table showing the
values of all three variables. Then graph the
x- and y-values.

t X Yy
-1 |-48 |-80 }:
o | of o - =
05| 24 | 28 i BN
L k|8 AT
3 |144 | 48
4 1192 0
Graph each curve.
12
Lx=3t y=— 2.x=0+1, y=1-1
, y
o| 1 X -

© Glencoe/McGraw-Hill 95 Advanced Mathematical Concepts
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Study Guide
Inverse Functions and Relations

Two relations are inverse relations if and only if one relation
contains the element (b, a) whenever the other relation
contains the element (a, b). If the inverse of the function f(x)
is also a function, then the inverse is denoted by f~(x).

Example 1 Graph f(x) = %x:* — 3 and its inverse.

To graph the function, let y = f(x). To graph
f~Yx), interchange the x- and y-coordinates of
the ordered pairs of the function.

flx)=1x-3 £71(%)

X y X y

-3 —-9.75 —-9.75 -3

—2 -5 -5 —2

—1 —-3.25 —-3.25 —1
0 -3 -3 0
1 —2.75 —2.75 1
2 —1 —1 2
3 3.75 3.75 3

You can use the horizontal line test to determine if the
inverse of a relation will be a function. If every horizontal line
intersects the graph of the relation in at most one point, then
the inverse of the relation is a function.

You can find the inverse of a relation algebraically. First, let
y = f(x). Then interchange x and y. Finally, solve the
resulting equation for y.

Example 2 Determine if the inverse of f(x) = (x — 1)2+ 2
is a function. Then find the inverse.

y
y=4 \ /f )
Since the line y = 4 intersects the graph of f(x) \ \/
at more than one point, the function fails the £
horizontal line test. Thus, the inverse of f(x) is TN
not a function. o T
y=(x—12+2 Let y = f(x).
x=(y—12+2 Interchange x and y.
x—2=(y—1)? Isolate the expression containing Y.
+*Vx —2 = Take the square root of each side.

-1
1+Vx—2 Solve for y.

Y

© Glencoe/McGraw-Hill 96 Advanced Mathematical Concepts
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Practice

Inverse Functions and Relations

Graph each function and its inverse.

1. flx) = (x — 13+ 1 2. f(x) = 3|x| + 2
b/ Y
(0] X (0] X

Find the inverse of f(x). Then state whether the inverse is also a function.

3. flo) = —dx* + 1 4. f@) = Va — 1 5. flo) = —43)2

Graph each equation using the graph of the given parent function.

6.y=—Vx+3—1,pkx) =x2 7.y =2+ Va+2,pa) =
y y
0 X ° X

8. Fire Fighting Airplanes are often used to drop water on forest fires in an effort to
stop the spread of the fire. The time ¢ it takes the water to travel from height 4 to
the ground can be derived from the equation 4 = %gt2 where g is the acceleration
due to gravity (32 feet/second?).

a. Write an equation that will give time as a function of height.

b. Suppose a plane drops water from a height of 1024 feet. How many seconds will it
take for the water to hit the ground?

© Glencoe/McGraw-Hill 97 Advanced Mathematical Concepts
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Enrichment

An Inverse Acrostic

The puzzle on this page is called an acrostic. To solve the puzzle,
work back and forth between the clues and the puzzle box. You may
need a math dictionary to help with some of the clues.

1. If a relation contains the element (e, v), then the -
inverse of the relation must contain the element 17 28

()

2. The inverse of the function 2x is found by

computing __ of x. 229 6 27
3. The first letter and the last two letters of the o
meaning of the symbol f ! are __. 1331
4. This is the product of a number and its o
multiplicative inverse. 2011 34
5. If the second coordinate of the inverse of (x, f(x)) is o
y, then the first coordinate is read “__ of __”. 36 7
6. The inverse ratio of two numbers is the __ of the -
reciprocals of the numbers. 24161910 4
7.If - is a binary operation on set S and _
x-e=e-x=xforall xin S, then an identity 18

element for the operation is __.
8. To solve a matrix equation, multiply each side of

the matrix equation on the __ by the inverse 53 21 8
matrix.
9. Two variables are inversely proportional __ their .
product is constant. 39 225
10. The graph of the inverse of a linear
function is a __ line. 2632 3023251215 1

From President Franklin D. Roosevelt’s inaugural address
during the Great Depression; delivered March 4, 1933.

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36

© Glencoe/McGraw-Hill 98 Advanced Mathematical Concepts
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Study Guide
Continuity and £nd Behavior

A function is continuous at x = c if it satisfies the following three conditions.
(1) the function is defined at c; in other words, f(c) exists;
(2) the function approaches the same y-value to the left and right of x = c; and

(3) the y-value that the function approaches from each side is f(c).

Functions can be continuous or discontinuous. Graphs that
are discontinuous can exhibit infinite discontinuity, jump
discontinuity, or point discontinuity.

Example 1 Determine whether each function is continuous
at the given x-value. Justify your answer using

the continuity test.
2x

a. fx) = 2|x|+ 8;x =2 b. fx) = z"75x=1
(1) The function is defined at x = 2; Start with the first condition in the
f2)="1. continuity test. The function is not
(2) The tables below show that y defined at x = 1 because substituting 1
approaches 7 as x approaches 2 for x results in a denominator of zero. So
from the left and that y approaches the function is discontinuous at x =1.
7 as x approaches 2 from the right.
x_[y=10 x [y=fi c,f(x)={2x+1 if w>2
x—1 if x=2
1.9 6.8 2.1 7.2
199 | 6.98 201 | 7.02 This function fails the second part of the
1.999 | 6.998 2.001 | 7.002 continuity test because the values of
) f(x) approach 1 as x approaches 2 from
(3) Since the y-values approach 7 as the left, but the values of f(x) approach

x approaches 2 from both sides
and f(2) = 7, the function is
continuous at x = 2.

5 as x approaches 2 from the right.

The end behavior of a function describes what the y—values do
as | x | becomes greater and greater. In general, the end behavior of
any polynomial function can be modeled by the function made up
solely of the term with the highest power of x and its coefficient.

Example 2 Describe the end behavior of p(x) = —x° + 2x3 — 4.

Determine f(x) = a,x" where x" is the term in p(x) with
the highest power of x and a, is its coefficient.

fx)=—a® x"=x° a =—1

Thus, by using the table on page 163 of your text, you
can see that when a” is negative and n is odd, the end
behavior can be stated as p(x) > —« as x — - and
p(x) = 0 as x — —oo,
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Practice

Continuity and £nd Behavior

Determine whether each function is continuous at the given x-value. Justify
your answer using the continuity test.

2 .. _ _x2+x+4.,. _
1.y—3xz,x— 1 2.y——2 ;=1

— a3 o — _x—2... _ _
.y=x°"—2x+2;x=1 4.y—x+4,x— 4
Describe the end behavior of each function.
5.y =2x5—4x 6. y=—-2x5+4x*—-2x+1
7.y =x*—2x3 +x 8.y=—-4x3+5

Given the graph of the function, determine the interval(s) for which the function
is increasing and the interval(s) for which the function is decreasing.

9. y

N

TN\

A

™~
-
~—]

I\
|
N
Lo
\
X

~—
T

10. Electronics Ohm’s Law gives the relationship between resistance R, voltage

E
I
current keeps increasing in the circuit, what happens to the resistance?

E, and current I in a circuit as R = 7. If the voltage remains constant but the

© Glencoe/McGraw-Hill 100 Advanced Mathematical Concepts



NAME DATE PERIOD

Enrichment

Reading Mathematics

The following selection gives a definition of a continuous function as
it might be defined in a college-level mathematics textbook. Notice
that the writer begins by explaining the notation to be used for
various types of intervals. It is a common practice for college authors
to explain their notation, since, although a great deal of the notation
is standard, each author usually chooses the notation he or she
wishes to use.

Throughout this book, the set S, called the domain of definition of a function, will usually be
an interval. An interval is a set of numbers satisfying one of the four inequalities a < x < b,
as=x<b,a<x=b,ora=x=b>b. Inthese inequalities, a = b. The usual notations for the
intervals corresponding to the four inequalities are, respectively, (a, b), [a, b), (a, b], and [a, b].

An interval of the form (a, b) is called open, an interval of the form
[a, b) or (a, b] is called half-open or half-closed, and an interval of the form
[a, b] is called closed.

Suppose | is an interval that is either open, closed, or half-open. Suppose f (x) is a function
defined on / and xis a point in /. We say that the function f(x) is continuous at the point x,, if
the quantity | f(x) — f(x,) | becomes small as x € / approaches x,,.

Use the selection above to answer these questions.
1. What happens to the four inequalities in the first paragraph when a = b?

2. What happens to the four intervals in the first paragraph when a = b?

3. What mathematical term makes sense in this sentence?
If f(x)isnot _? _at x,, it is said to be discontinuous at x.

4. What notation is used in the selection to express the fact that a number x is
contained in the interval I?

5. In the space at the right, sketch the graph
of the function f(x) defined as follows:

. Lifxe [o,%)

1,ifx e [% 1]
6. Is the function given in Exercise 5 continuous on the
interval [0, 1]? If not, where is the function discontinuous?
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Study Guide
Critical Points and Extrema

Critical points are points on a graph at which a line drawn
tangent to the curve is horizontal or vertical. A critical point may be
a maximum, a minimum, or a point of inflection. A point of
inflection is a point where the graph changes its curvature. Graphs
can have an absolute maximum, an absolute minimum, a
relative maximum, or a relative minimum. The general term for
maximum or minimum is extremum (plural, extrema).

Example 1 Locate the extrema for the graph of y = f(x).
Name and classify the extrema of the function.

a. y C.

The function has an absolute maximum
at (0, 2). The absolute maximum is the
greatest value that a function assumes
over its domain.

The relative maximum and minimum
may not be the greatest and the least
y-value for the domain, respectively, but
they are the greatest and least y-value on
some interval of the domain. The function
has a relative maximum at (—2, —3) and a
relative minimum at (0, —5). Because

e e e AR the graph indicates that the function
increases or decreases without bound as
The function has an absolute x increases or decreases, there is neither
minimum at (—1, 0). The absolute an absolute maximum nor an absolute
minimum is the least value that a minimum.

function assumes over its domain.

By testing points on both sides of a critical point, you can
determine whether the critical point is a relative maximum, a
relative minimum, or a point of inflection.

Example 2 The function f(x) = 2x% + 2x* — 9x2 has a critical
point at x = 0. Determine whether the critical
point is the location of a maximum, a minimum,
or a point of inflection.

_ _ Type of
X x—01| x+01 | f(x—0.1) | £(x) | f(x+0.1) Critical Point
0 -0.1 0.1 —0.0899 0 —0.0899 maximum

Because 0 is greater than both f(x — 0.1) and
f(x + 0.1), x = 0 is the location of a relative maximum.
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Practice

Critical Points and Extrema

Locate the extrema for the graph of y = f(x). Name and classify the
extrema of the function.

1. y 4 2. Y
A /
1
\\ / -
) / ‘\ A
19} X |
7 \ 0 X
\
/
3 y 4. y 4
|
/
/
[l_ol\
I \ X /O X
| |
|
/
v

Determine whether the given critical point is the location of a maximum, a
minimum, or a point of inflection.

5. y=x2—-6x+1,x=3 6. y=x2—-2x—-6,x=1 7. y=x*+3x>—-5,x=0

8.y=x"—-2-222x=0 9. y=x>+x>—x,x=-1 10.y=2x>+4,x=0

11. Physics Suppose that during an experiment you s(t)
launch a toy rocket straight upward from a height 6
of 6 inches with an initial velocity of 32 feet per o

second. The height at any time ¢ can be modeled by
the function s(¢) = —16¢2 + 32¢ + 0.5 where s(¢) is
measured in feet and ¢ is measured in seconds. 4
Graph the function to find the maximum height
obtained by the rocket before it begins to fall.
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"Unreal” £Equations

There are some equations that cannot be graphed on the
real-number coordinate system. One example is the equation
x%2 —2x + 2y? + 8y + 14 = 0. Completing the squares in x and y
gives the equation (x — 1)2 + 2(y + 2)? = —5.

For any real numbers, x and y, the values of (x — 1)? and 2(y + 2)?
are nonnegative. So, their sum cannot be —5. Thus, no real values of
x and y satisfy the equation; only imaginary values can be solutions.

Determine whether each equation can be graphed on the
real-number plane. Write yes or no.

1. (x+32+(y—22=—-4 2. x2 - 3x+y2+4y=-7
3. x+22+y?—6y+8=0 4. x>+ 16=0
5. x*+4y2+4=0 6. x2+4y>+4xy+16=0

In Exercises 7 and 8, for what values of k :

a. will the solutions of the equation be imaginary?
b. will the graph be a point?

c. will the graph be a curve?
d.

Choose a value of k for which the graph is a curve and sketch
the curve on the axes provided.

7.x2—4x+y2+8y +k=0 8. x2+4x+y2—6y—k=0
y Yy
(0] X (0] X
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Graphs of Rational Functions

A rational function is a quotient of two polynomial functions.

PERIOD

The line x = a is a vertical asymptote for a function f(x) if f(x) >~ or f(x) > —~asx > a
from either the left or the right.

The line y = b is a horizontal asymptote for a function f(x) if f(x) - b as x — « or as
X — —oo,

A slant asymptote occurs when the degree of the numerator of a rational function is exactly
one greater than that of the denominator.

Example 1 Determine the asymptotes for the graph of

Example 2 Determine the slant asymptote for
—3x2—2x+2
flx) = x—1 ’
First use division to rewrite the function.
3x+1
x—1)32 - 2% +2 — f(x)=3x+1+i
9 x—1
3x — 3x
x+ 2
x—1
3
As x — oo, x_% — 0. Therefore, the graph of f(x)
will approach that of y = 3x + 1. This means that
the line y = 3x + 1 is a slant asymptote for the
graph of f(x).
© Glencoe/McGraw-Hill 105 Advanced Mathematical Concepts

fla) =22=1

x+3°

Since f(—3) is undefined, there
may be a vertical asymptote at
x = —3. To verify that x = —3 is
a vertical asymptote, check

to see that f(x) — « or

fx) > —~ asx - —3 from
either the left or the right.

One way to find the horizontal
asymptote is to let f(x) =y and
solve for x in terms of y. Then
find where the function is
undefined for values of y.

Y= 2;c+ 31
yax+3)=2x—1

X fix) xy +3y=2x—1

2.9 —68 o —

—2.99 ~698 xy —2c=—3y—1

~2.999 | —6998 x(y—2)=-3y—-1

—2.9999 | —69998 x = —3y —21

Y —

The values in the table confirm Th nal . -8y —1.
that f(x) — —eo as x — —3 from e rational expression MR

the right, so there is a vertical
asymptote at x = —3.

undefined for y = 2. Thus, the
horizontal asymptote is the line
y =2.
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Practice

Graphs of Rational Functions

Determine the equations of the vertical and horizontal asymptotes, if any, of
each function.

1 fl) = 5% 2. i) = 2L 380 = e

Use the parent graph f(x) = % to graph each equation. Describe the

transformation(s) that have taken place. Identify the new locations
of the asymptotes.

__ 3 _ - __14
4.y—x+1 2 5.y x_3+3
y y
o X
(0] X

Determine the slant asymptotes of each equation.

_ 5x2—10x +1 _ x2—x
6. y - x — 2 7. y x + 1
Y
8. Graph the function y = xzifxl_G
(0] X

9. Physics The illumination I from a light source is given by the
formula I = PL where k is a constant and d is distance. As the

distance from the light source doubles, how does the illumination
change?
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Slant Asymptotes

The graph of y = ax + b, where a # 0, is called a slant asymptote of
y = f(x) if the graph of f(x) comes closer and closer to the line as
X = 00 Or X > —oo,

2 .
For f(x)=3x +4 + Y= 3x + 4 is a slant asymptote because

f(x)—(3x+4)=%,and%ﬂOasx%ooorx%—oo.

. x?2+ 8x+ 15
Example Find the slant asymptote of f(x) = — 5
—2| 1 8 15 Use synthetic division. f(x)
-2 —-12
1 6 |3 A
7/
_x2+8x+15_ 3 s
Y= x+2 _‘x+6+x+2 ,//\\O ] x
. 3
Since 1o =0 as x >o Or x > —oo,
y =x + 6 is a slant asymptote.

Use synthetic division to find the slant asymptote for each of the following.

8x2 — 4x + 11
Ly= x+5
B x2+3x—15
2.3/—736_2
x2—2x — 18
3.3/—736_3

ax?+bx+c

4,y = v —d

ax?+bx+c

5'y: x+d
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Direct, Inverse, and Joint Variation

A direct variation can be described by the equation y = kx".
The % in this equation is called the constant of variation.
To express a direct variation, we say that y varies directly as
x". An inverse variation can be described by the equation

y = f—n or x™y = k. When quantities are inversely
proportional, we say they vary inversely with each other.
Joint variation occurs when one quantity varies directly as
the product of two or more other quantities and can be
described by the equation y = kx"z".

Example 1 Suppose y varies directly as x and y = 14 when x = 8.
a. Find the constant of variation and write an
equation of the form y = kx".
b. Use the equation to find the value of y when
x=4.

a. The power of x is 1, so the direct variation
equation is y = kx.
y = kx
14=Fk8) y=14,x=38
1.75 =k Divide each side by 8.
The constant of variation is 1.75. The
equation relating x and y is y = 1.75x.

b. y = 1.75x
y=1754) x=4
y=1

When x = 4, the value of y is 7.

Example 2 1If y varies inversely as x and y = 102 when x = 7,
find x when y = 12.

Use a proportion that relates the values.

oo_w
Yo Y1
T _x_ ;
15 = 102 Substitute the known values.
12x = 714 Cross multiply.
x = % or 59.5 Divide each side by 12.

When y = 12, the value of x is 59.5.
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Practice

Direct, Inverse, and Joint Variation
Write a statement of variation relating the variables of each equation.
Then name the constant of variation.

1. — % = 2. E=1IR
y

3.y =2x 4. d = 6¢2

Find the constant of variation for each relation and use it to write an
equation for each statement. Then solve the equation.

5. Suppose y varies directly as x and y = 35 when x = 5. Find y when x = 7.

6. If y varies directly as the cube of x and y = 3 when x = 2, find x when y = 24.

7. If y varies inversely as x and y = 3 when x = 25, find x when y = 10.

8. Suppose y varies jointly as x and z, and y = 64 when x = 4 and z = 8.
Find y whenx = 7and z = 11.

9. Suppose V varies jointly as 2 and the square of r, and V = 457 when r = 3 and
h =5 Findr when V=175rand h = 7.

10. If y varies directly as x and inversely as the square of z, and y = —5 when x = 10 and
z=2,findy whenx =5 and z = 5.

11. Finances Enrique deposited $200.00 into a savings account. The simple
interest I on his account varies jointly as the time ¢ in years and the principal P.
After one quarter (three months), the interest on Enrique’s account is $2.75.
Write an equation relating interest, principal, and time. Find the constant of
variation. Then find the interest after three quarters.
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Reading Mathematics: Interpreting
Conditional Statements
The conditional statement below is written in “if-then” form. It has
the form p — g where p is the hypothesis and g is the consequent.
If a matrix A has a determinant of 0, then A~! does not exist.

It is important to recognize that a conditional statement need not
appear in “if-then” form. For example, the statement

Any point that lies in Quadrant I has a positive x-coordinate.
can be rewritten as
If the point P(x, y) lies in Quadrant I, then x is positive.

Notice that P lying in Quadrant I is a sufficient condition for its
x-coordinate to be positive. Another way to express this is to say
that P lying in Quadrant I guarantees that its x-coordinate is
positive. On the other hand, we can also say that x being positive is
a necessary condition for P to lie in Quadrant I. In other words, P
does not lie in Quadrant I if x is not positive.

To change an English statement into “if-then” form requires that
you understand the meaning and syntax of the English statement.
Study each of the following equivalent ways of expressing p — q.

* If p then q ® p implies g
*ponly ifqg *onlyifq,p
® p is a sufficient condition for ¢ ® not p unless q

® g is a necessary condition for p.

Rewrite each of the following statements in “if-then” form.

1. A consistent system of equations has at least one solution.

2. When the region formed by the inequalities in a linear
programming application is unbounded, an optimal solution
for the problem may not exist.

3. Functions whose graphs are symmetric with respect to the y-axis are
called even functions.

4. In order for a decimal number d to be odd, it is sufficient that d end in the digit 7.
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Chapter 3 Test, form 1A

Write the letter for the correct answer in the blank at the right of
each problem.
1. The graph of the equationy = x
which of the following?
A. the x-axis B. the y-axis C. the origin D. none of these

3 — x is symmetric with respect to 1.

2. If the graph of a function is symmetric about the origin, which of the 2.
following must be true?

A. fx) = f(-x) B. f(-—x) = —f(x) C. f(x) = |f)] D. flx) =

f( )
3. The graph of an odd function is symmetric with respect to which 3.
of the following?
A. the x-axis B. the y-axis C. the liney = x D. none of these
4. Given the parent function p(x) = [x], what transformations 4.
occur in the graph of p(x) = 2[x — 3] + 4?
A. vertical expansion by factor B. vertical compression by factor of
of 2, left 3 units, up 4 units 0.5, down 3 units, left 4 units
C. vertical expansion by factor D. vertical compression by factor of
of 2, right 3 units, up 4 units 0.5, down 3 units, left 4 units

5. Which of the following results in the graph of f(x) = x? being expanded 5.
vertically by a factor of 3 and reflected over the x-axis?

A fo) =12 B. fx)= -3 C.fx) = —% +3D. fx) = -+

6. Which of the following represents the graph of f(x) = |x[? — 1? 6.
A. | #(x B. | |¥(x) C. AL Af(9 D. 4\ f(
/ \
o)
o] X O X o] X X

7. Solve |2x — 5| = 7. 7.
A x=-lorx=6 B. - 1=x=6
C.x=6 D.x=-1

8. Choose the inequality shown by the graph. y 8.
A y=2x| +1
B.y=—-2}x|+1 o) x
C.y=2]x| -1
D.y=—-2}x| -1 / \

9. Find the inverse of f(x) = 2Vx + 3. 9.
A f7) = (253) B. fx) = (252
C.fx)=4Vx—-3 D. fl(x) = %\F

10. Which graph represents a function whose inverse is also a function?  10.
A. y B. y C. [ A4 ] D. yA [}
\ / /
X
B~ Ol —
[o) X \{ (0) X [o) %
W '
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Chapter 3 Test, Form 1A (continued)

11. Describe the end behavior of f(x) = 2x* — 5x + 1. 11.
A. x > oo, f(x)> > B. x— x, f(x) > ©
x— —oo, flx) > —oo x— —, f(x) >
C. x> f(x) > —x D. x - oo, f(x) > —o0
x — —, flx) — © x— —%, fx) > —x
12. Which type of discontinuity, if any, is shown vh | A 12.
in the graph at the right? g
A. jump B. infinite i
C. point D. The graph is continuous. S \v
X
13. Choose the statement that is true for the graph
of f(x) = x3 — 12x. 13.
A. f(x) increases for x > —2. B. f(x) decreases for x > —2.
C. f(x) increases for x > 2. D. f(x) decreases for x < 2.
14. Which type of critical point, if any, is present in the graph of 14.
fx) =(—x+4P5+1?
A. maximum B. minimum
C. point of inflection D. none of these
15. Which is true for the graph of f(x) = —x3 + 3x — 2? 15.

A. relative maximum at (1,0) B. relative minimum at (1, 0)
C. relative maximum at (—1, —4) D. relative minimum at (0, —2)

16. Which is true for the graph of y = zz - 3? 16.
A. vertical asymptotes at x = =3 B. horizontal asymptotes aty = + 2

C. vertical asymptotes at x = =2 D. horizontal asymptote aty = 1

17. Find the equation of the slant asymptote for the graph of 17.
x> —4x2+2x— 5
- x%+ 2
A y=x—-14 B.y=x+1 C.y=x D.y=1
18. Which of the following could be the function 14 (X 18.

represented by the graph at the right?
A. f(x) _x+t 1 B. f(.X') — (x + Dx — 3)

x+ 2 (x — 3)x + 2) - < <
_x+1 _ @+ D+ 3 X
C.rflo==2 D-f0W=C5072 /
19. Chemistry The volume V of a gas varies inversely as pressure P is 19.

exerted. If V = 3.5 liters when P = 5 atmospheres, find V when
P = 8 atmospheres.
A. 2.188 liters B. 5.600 liters C. 11.429 liters D. 17.5 liters

20. If y varies jointly as x and the cube of z, and y = 378 whenx =4 and  20.
z=3,findy whenx =9 and z = 2.
A.y=2835 B.y=84 C. y =567 D. y = 252

Bonus An even function f has a vertical asymptote at x = 3 and a Bonus:

maximum at x = 0. Which of the following could be f?
A fx)= =% B. flx) = —2_ C. fx) = 52— D. flx) = £

x2—9 x—3 x2+9 x*— 81
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Chapter 3 Test, Form 1B

Write the letter for the correct answer in the blank at the right of
each problem.
1. The graph of the equation y = x* — 3x? is symmetric with respect to 1.
which of the following?
A. the x-axis  B. the y-axis  C. the origin D. none of these

2. If the graph of a function is symmetric with respect to the y-axis, 2.
which of the following must be true?

A. fx) = f(—x) B. f(x) = —f(x) C. fx) =|f(x)] D. flx) = -

flx)
3. The graph of an even function is symmetric with respect to which of 3.
the following?
A. the x-axis  B. the y-axis C. the liney = xD. none of these
4. Given the parent function p(x) = x2, what translations occur in 4.
the graph of p(x) = (x — 7)2 + 3?
A. right 7 units, up 3 units B. down 7 units, left 3 units
C. left 7 units, up 3 units D. right 7 units, down 3 units

5. Which of the following results in the graph of f(x) = x? being expanded 5.
vertically by a factor of 3?
A f@)=2>+3B. fx) = 32> C. f@) =32 D. flx) = —3x>

6. Which of the following represents the graph of f(x) = |x? — 1|? 6.
A. f(x) B. | [ (4 C. f(x) D. f(x)
\L_/ \_[ 1/
N/
(0] X (0] X [0) X (0] X
7. Solve [2x — 4| < 6. 7.
A.x<-—-lorx>5 B. -1<x<5
C.x<5 D. x> -1
8. Choose the inequality shown by the graph. y 8.
A.y=sk+2/+1 B.y=spxk—-2[+1
C.y=x+2/+1 D.y=|x—2|+1 ) B
9. Find the inverse of f(x) = ﬁ 9.
-1 __1 -1 _1
A.f (.’X,')—m B.f (x)—;+2
C.flx)=x+2 D. flw=1-2
10. Which graph represents a function whose inverse is also a function?  10.
A. y B. [A"14] C. y D. y
\ /
/
“TNO X (o) X [o] X [0) X
1/
w 4
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Chapter 3 Test, Form 1B (continued)

11. Which type of discontinuity, if any, is shown 5\" /f 11.
in the graph at the right? J
A. jump B. infinite O\ Z -
C. point D. The graph is continuous.
12. Describe the end behavior of f(x) = 2x> — 5x + 1 12.
A. x > o, fx) > B. x - o, f(x) > o
x — —o, f(x) > — x— —o, f(x) > ©
C. x>, flx) > —x D. x > o, f(x) > —o©
x — —o, f(x) > © x — —o, f(x) > —
13. Choose the statement that is true for the graph of f(x) = —(x — 2)2. 13.
A. f(x) increases for x > —2. B. f(x) decreases for x > —2.
C. f(x) increases for x < 2. D. f(x) decreases for x < 2.
14. Which type of critical point, if any, is present in the graph of 14.
flx) = (—x + 4)3?
A. maximum B. minimum
C. point of inflection D. none of these
15. Which is true for the graph of f(x) = x® — 3x + 2? 15.

A. relative maximum at (1,0) B. relative minimum at (—1, 4)
C. relative maximum at (—1,4) D. relative minimum at (0, 2)

16. Which is true for the graph of y = zz = 3? 16.

A. vertical asymptotes,x = =3 B. horizontal asymptotes,y = *+2
C. vertical asymptotes,x = £2 D. horizontal asymptote,y = 0

17. Find the equation of the slant asymptote for the graph of 17.
y = 3x%? +2x — 3
x—1

A . y=x B.y=3x+1 C.y=x+3 D.y=3x+5

18. Which of the following could be the function A | |V 18.

represented by the graph at the right?

__x __ x(x—3)
A @ =g B/ =Tony

B _ x(x+ 3)
C.fo =25 D fO=(T5579 '

19. Chemistry The volume V of a gas varies inversely as pressure P is 19.
exerted. If V = 4 liters when P = 3.5 atmospheres, find V when
P = 2.5 atmospheres.
A. 5.6 liters B. 2.188 liters C. 2.857 liters D. 10.0 liters

20. If y varies jointly as x and the cube root of z, and y = 120 whenx =3  20.
and z = 8§, find y when x = 4 and z = 27.

A. y =540 B. y = 240 C. y =60 D. y =262
Bonus If f(g(x)) = x and f(x) = 3x — 4, find g(x). Bonus:
A gw)=%5% B.gr)=%tt C.gw)=%+4D.gx)=% -4
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Chapter 3 Test, form 1C

Write the letter for the correct answer in the blank at the right of
each problem.

1. The graph of the equation y = x> — 3 is symmetric with respect to 1.
which of the following?
A. the x-axis  B. the y-axis  C. the origin  D. none of these

2. If the graph of a relation is symmetric about the line y = x and the 2.
point (a, b) is on the graph, which of the following must also be on
the graph?
A. (—a,b) B. (a, —b) C. (b,a) D. (—a, —b)

3. The graph of an odd function is symmetric with respect to which 3.
of the following?
A. the x-axis  B. the y-axis  C. the origin  D. none of these

4. Given the parent function p(x) = Vx, what transformation occurs in 4.
the graph of p(x) = Vx + 2 — 5?
A. right 2 units, up 5 units B. up 2 units, right 5 units
C. left 2 units, down 5 units D. down 2 units, left 5 units

5. Which of the following results in the graph of f(x) = x? being 5.

expanded vertically by a factor of 4?
A f)=2>+4 B. f@) =22~ 4 C. f@) =42 D. flx) = a2

6. Which of the following represents the graph of f(x) = |x3|? 6.
A. f(x) 14 B. f(x) C. () f D. f(x) 5
\ | X
\
/10 [ Ix [o) X [ \
| \
| o) x |
Y
7. Solve |x — 4| < 6. 7.
A x> -2 B. x <10
C. 2<x<10 D. x<—-2o0rx>10
8. Choose the inequality shown by the graph. 2 MF. 8.
A y=x2+1 B.y=(x—-1)7?
C.y=x2-1 D. y=(x+1)?
(0] X
9. Find the inver§e of f(x) = 2x — 4. . 9.
-1 — -1 —_ x+
A f (x)—2x_4 B. fix) 3
C. f‘l(x)=%+4 D. f‘l(x)=%—4
10. Which graph represents a function whose inverse is also a function?  10.
A. N\ y /f B. y C. y D. y
/ ™
[0 X [o) X [0] X [o) X
N/
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Chapter 3 Test, Form 1C (continued)

11. Which type of discontinuity, if any, is shown y 11.
in the graph at the right?
A. jump
B. infinite
C. point
D. The graph is continuous.

12. Describe the end behavior of f(x) = —x2. 12.
A. x > oo, f(x) > B. x = oo, f(x) >
D.

x — —oo, f(x) = —oo x — —oo, f(xx) = oo
C. x—)oo,f(x)% —oo x%oo’f(x)% — oo

X — —oo, f(x) > o0 X — —oo, f(x) > —oo
13. Choose the statement that is true for the graph of f(x) = (x + 1) 13.
A. f(x) increases for x > —1. B. f(x) decreases for x > —1.
C. f(x) increases for x < 1. D. f(x) decreases for x < 1.
14. Which type of critical point, if any, is present in the graph 14.
of f(x) =x% —1?
A. maximum B. minimum
C. point of inflection D. none of these
15. Which is true for the graph of f(x) = x® — 3x? 15.

A. relative maximum at (1, —2) B. relative minimum at (-1, 2)
C. relative maximum at (=1, 2) D. relative minimum at (0, 0)

16. Which is true for the graph of y = 22— 99 16.

x2—4
A. vertical asymptotes at x = =3 B. horizontal asymptotes aty = +2
C. vertical asymptotes at x = =2 D. horizontal asymptote aty = 0

17. Find the equation of the slant asymptote for the graph of y = K25 17.

x+3
A . x=3 B.y=x-3 C.y=x D.y=x+3
18. Which of the following could be the function f(x) 18.
represented by the graph? \
—_ 1 _ x — 2
A f =7 B. fW0 =957 0 =
_xt2 _ x—2
C. flx) = -1 D. f(x) = o r—y
19. Chemistry The volume V of a gas varies inversely as pressure 19.

P is exerted. If V = 4 liters when P = 3 atmospheres, find V when
P = 7 atmospheres.
A. 1.714 liters B. 5.25liters  C. 9.333 liters D. 1.5 liters

20. If y varies inversely as the cube root of x, and y = 12 when x = 8, 20.
find y when x = 1.
A.y=6144 B.y=24 C.y=6 D.y=<3:
Bonus The graph of f(x) = x21_ : has a vertical asymptote at x = 3. Bonus:
Find c.
A 9 B. 3 C. -3 D. -9
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Chapter 3 Test, Form 2A

Determine whether the graph of each equation is symmetric with
respect to the origin, the x-axis, the y-axis, the line y = x, the line
y = —X, or none of these.

l.xy=-4 1.
2.x =5y — 2 2.
3. Determine whether the function f(x) = 2 L 7 is odd, even, 3.
or neither.
4. Describe the transformations relating the graph of 4.
y = —2x3 + 4 to its parent function, y = x3.
5. Use transformations of the parent graph p(x) = % 5. (x)
to sketch the graph of p(x) = ﬁ - 1.
0 X
6. Graph the inequality y > 2x2 — 1. 6. y
(0] X
7. Solve |5 — 2x| = 11. 7.
Find the inverse of each function and state whether the
inverse is a function.
— X
8. f(x) = popras 8.
9. f(x) =x*>—4 9.
10. Graph f(x) = x® — 2 and its inverse. State whether the 10.
inverse is a function. 7
(0] X
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Chapter 3 Test, Form 2A (continued)

Determine whether each function is continuous at the given
x-value. If discontinuous, state the type of discontinuity (point,
jump, or infinite).

2+ 1ifx<1

11. f(x) = B34 9ifx= PE= 1 11.
_x24+9... _ _

12. f(x)——x+3,x 3 12.

13. Describe the end behavior of y = —3x* — 2x. 13.

14. Locate and classify the extrema for the graph of 14.

y=x*—3x? + 2.

15. The function f(x) = x> — 3x2 + 3x has a critical point 15.
when x = 1. Identify the point as a maximum, a
minimum, or a point of inflection, and state its coordinates.

16. Determine the vertical and horizontal asymptotes for 16.

the graph of y = %4
egrapoly = 5 52+ 6x

17. Find the slant asymptote for y = % 17.

18. Sketch the graph of y = NL 18.

—x2—-12x"

19. If y varies directly as x and inversely as the square root 19.
ofz,andy = 8 when x = 4 and z = 16, find y when x = 10
and z = 25.

20. Physics The kinetic energy E, of a moving object, 20.
measured in joules, varies jointly as the mass m
of the object and the square of the speed v. Find the
constant of variation & if E, is 36 joules, m is 4.5 kilograms,
and v is 4 meters per second.

Bonus Given the graph of p(x), (x) Bonus:
sketch the graph of

y= —2p[%(x - 2)] + 2.
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Chapter 3 Test, form 2B

Determine whether the graph of each equation is symmetric with
respect to the origin, the x-axis, the y-axis, the line y = x, the line
y = —Xx, or none of these.

l.xy =2
2.y =5x3 — 2«
3. Determine whether the function f(x) = |x| is odd, even, 3.
or neither.
4. Describe the transformations relating the graph of 4.
y = %(x — 3)? to its parent function, y = x2.
5. Use transformations of the parent graph of p(x) = Vx 5. px)
to sketch the graph of p(x) = —Vx — 3.
o X
6. Graph the inequality y = (x — 2)3. 6. y
[0) X
7. Solve |2x — 4] = 10. 7.
Find the inverse of each function and state whether the
inverse is a function.
8. flx)=x%—4 8.
9. f(x) = (x — 1)? 9.
10. Graph f(x) = x2 + 2 and its inverse. State whether the 10.
inverse is a function.
y
(0] X
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Chapter 3 Test, Form 2B (continued)

Determine whether each function is continuous at the given
x-value. If discontinuous, state the type of discontinuity (point,
jump, or infinite).

Cfx?+ 1 ifx<l
ll.f(x)—{_erSifle,x—l 11.
_x2-9..._
12.f(x)—x+3,x— 3 12.
13. Describe the end behavior of y = 3x3 — 2x. 13.
14. Locate and classify the extrema for the graph 14.
of y = x* — 3x2.
15. The function f(x) = —x® — 6x? — 12x — 7 has a critical 15.
point when x = —2. Identify the point as a maximum, a

minimum, or a point of inflection, and state its coordinates.

16. Determine the vertical and horizontal asymptotes for the  16.

2 _
graph of y = ;53 _;12.
17. Find the slant asymptote for y = % 17.
18. Sketch the graph of y = ﬁ 18. Y
(0] x
19. If y varies directly as x and inversely as the square of z, 19.
and y = 8 when x = 4 and z = 3, find y when x = 6 and

z=—-2.

20. Geometry The volume V of a sphere varies directly as 20.
the cube of the radius r. Find the constant of variation &
if V is 2887 cubic centimeters and r is 6 centimeters.

Bonus Determine the value of £ such that Bonus:
Flx) = {2xzifx <2
x+kifx=2

is continuous when x = 2.
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Chapter 3 Test, Form 2C

Determine whether the graph of each equation is symmetric with
respect to the origin, the x-axis, the y-axis, the line y = x, the line
y = —X, or none of these.

1.y = 2| 1.
2.y=x%—x 2.
3. Determine whether the function f(x) = x? + 2 is odd, even, 3.
or neither.
4. Describe the transformation relating the graph of 4.
y = (x — 1)% to its parent function, y = x2. )
5. Use transformations of the parent graph p(x) = x3 5.
to sketch the graph of p(x) = (x + 2)3 — 1. 5
X
y
6. Graph the inequality y = x? — 1. 6.
(0] X
7. Solve |x — 4| = 8. 7.
Find the inverse of each function and state whether the
inverse is a function.
8. f(x) = x? 8.
9. flx) =x% -1 9.
10. Graph f(x) = —2x + 4 and its inverse. State whether the 10.
inverse is a function. (%)
[0) X
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Chapter 3 Test, Form 2C (continued)

Determine whether each function is continuous at the given
x-value. If discontinuous, state the type of discontinuity (point,
jump, or infinite).

x2+1ifx <0
ll'f(x):{—xifxzo ;=0 11.
_x+3 .. _
12. f(x) = R 3 12.
13. Describe the end behavior of y = x* — x2. 13.
14. Locate and classify the extrema for the graph of 14.
y = —x* — 2x2,

15. The function f(x) = x3 — 3x has a critical point when x = 0. 15.
Identify the point as a maximum, a minimum, or a point of
inflection, and state its coordinates.

16. Determine the vertical and horizontal asymptotes for the  16.

_ x—14
graph of y TS
17. Find the slant asymptote for y = xzx_fxl” 17.
y
18. Sketch the graph of y = Zq 18.
(0] X
19. If y varies directly as the square of x, and y = 200 19.
when x = 5, find y when x = 2.
20. If y varies inversely as the cube root of x, and y = 10 20.
when x = 27, find y when x = 8.
Bonus Determine the value of £ such that Bonus:

f(x) = 3x%2 + kx — 4 is an even function.
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Chapter 3 Open-Ended Assessment

Instructions: Demonstrate your knowledge by giving a clear, concise
solution to each problem. Be sure to include all relevant drawings and
justify your answers. You may show your solution in more than one way
or investigate beyond the requirements of the problem.

1. a. Draw the parent graph and each of the three transformations
that would result in the graph shown below. Write the

equation for each graph and describe the transformation.
y

(o) X
2

Y \

b. Draw the parent graph of a polynomial function. Then
draw a transformation of the graph. Describe the type of
transformation you performed. Use equations as needed
to clarify your answer.

4

c. Sketch the graph of y = %54

determined the shape of the graph and its vertical asymptotes.

. Describe how you

d. Write the equation of a graph that has a vertical asymptote
at x = 2 and point discontinuity at x = —1. Describe your
reasoning.

2. The critical points of f(x) = %xf’ - %x“ — %x?’ + 2areatx =0,

2, and —1. Determine whether each of these critical points is the
location of a maximum, a minimum, or a point of inflection.
Explain why x = 3 is not a critical point of the function.

3. Mrs. Custer has 100 bushels of soybeans to sell. The current
price for soybeans is $6.00 a bushel. She expects the market
price of a bushel to rise in the coming weeks at a rate of $0.10
per week. For each week she waits to sell, she loses 1 bushel
due to spoilage.

a. Find a function to express Mrs. Custer’s total income from
selling the soybeans. Graph the function and determine when
Mrs. Custer should sell the soybeans in order to maximize
her income. Justify your answer by showing that selling a
short time earlier or a short time later would result in less
income.

b. Suppose Mrs. Custer loses 5 bushels per week due to
spoilage. How would this affect her selling decision?
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Chapter 3 Mid-Chapter Test (Lessons 3-1 through 3-4)

Determine whether the graph of each equation is
symmetric with respect to the origin, the x-axis, the
y-axis, the line y = x, the line y = —x, or none of these.

l.x=y2-1 1.
2.xy =8 2,
3. Determine whether the function f(x) = 2(x — 1)® + 4x is 3.

odd, even, or neither.

4. Describe the transformations that relate the graph 4,
of p(x) = (0.5x)% + 1 to its parent function p(x) = x3. “
P (X,
5. Use transformations of the parent graph p(x) = [x] 5.
to sketch the graph of p(x) = 2[x — 3].
0 X
Y
6. Graph the inequality y = Vx — 1. 6.
[0] X
7. Solve |x — 4| = 6. 7.
Find the inverse of each function and state whether the
inverse is a function.
8. flx)=x3+1 8.
=1
9. flx) = — 9.
10. Graph f(x) = (x — 3)? and its inverse. State whether 10.
the inverse is a function.
F (k)
(o) X
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Chapter 3 Quiz A (Lessons 3-1 and 3-2)

Determine whether the graph of each equation is
symmetric with respect to the origin, the x-axis, the
y-axis, the line y = x, the line y = —x, or none of these.

— _ 1
l.y=(x—2)3 2.y—; 1.
2.
3. Determine whether the function f(x) = x® — 4x is 3.

odd, even, or neither.

4. Describe how the graphs of f(x) = |x| and g(x) = —4|x| 4.
are related.

5. Use transformations of the parent graph of p(x) = x2 to 5. 5 >
sketch the graph of p(x) = (x — 1) — 2.
NAME DATE PERIOD
Chapter 3 Quiz B (Lessons 3-3 and 3-4)
y
1. Graphy > —x2 + 1. 1.
[e) X
2. Solve |x + 3| > 4. 2.
3. Find the inverse of f(x) = 3x — 6. Is the inverse a function? 3.
f(x)
4. Graph f(x) = (x — 1)?> + 2 and its inverse. 4. = >
5. What is the equation of the line that acts as a line of 5.

symmetry between the graphs of f(x) and £ 1(x)?
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Chapter 3 Quiz C (Lessons 3-5 and 3-6)

Determine whether the function is continuous at the given x-value. If
discontinuous, state the type of discontinuity (jump, infinite, or point).

x2+1ifx <0
1. f(x) = xifx =0 ;=0 1.
_ 1 .
2. flx) = S % 1 2.
3. Describe the end behavior of y = x* — 3x + 1. 3.
4. Locate and classify the extrema for the graph of 4,
y = 2x3 — 6x.
5. The function f(x) = %5 - %x3 has a critical point at x = 2. 5.

Identify the point as a maximum, a minimum, or a point
of inflection, and state its coordinates.

NAME DATE PERIOD

Chapter 3 Quiz D (Lessons 3-7 and 3-8)

1. Determine the equations of the vertical and horizontal 1.

asymptotes, if any, for the graph of y = % .

2. Find the slant asymptote for f(x) = x2;4+2+3 2.
3. Use the parent graph f(x) = % to graph the function 3.
glx) = % Describe the transformation(s) that have )

taken place. Identify the new locations of the asymptotes.

Find the constant of variation for each relation and use it to
write an equation for each statement. Then solve the equation.

4. If y varies directly as x, and y = 12 when x = 8, find y when 4,
x = 14.

5. If y varies jointly as x and the cube of z, and y = 48 when 5.
x=3andz = 2,find y whenx = —2 and z = 5.
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Chapter 3 SAT and ACT Practice

After working each problem, record the 6.(3.1—-124)— (3.1 +124) =
correct answer on the answer sheet A —-248
provided or use your own paper. B -62
C o
Multiple Choice D 62
1. If x = y — 4, what is the value of E 248
ly —af + e = y? _ 1 :
A O 7.1fx =5zandy = T then which of
B 4 the following is equivalent to y?
C 8 A 95
D 16 x+2
E It cannot be determined from the B %
information given. C 1
x + 2
2. If 2x =5 — 4y and 12y = 6x — 15, then D 1
which of the following is true? 3x + 2
A 2y=5 E None of these
B 2x=35 x+y z+y
C y+2x<5 8. If e and = 5, then which
D x+2y>5 of the following is the value of £?
E 2y —x>5 A L x
3. Ifx = %, then 3(x — 1) + 4x is how %
B <2
many fifths? 5
A 13 (o
B 15 D 2
C 17 E 15
D 23
E 25 9. 1+ 3+5+5+15+35=
4.If x> + 3y = 10 and £ = —1, then
Y A 3V6
which of the following could be a 8
value of x? B @
A -5
B -2 c 2
C -1 1
D 2 D
E 3 E 3\gﬁ
5.168:252 as 6: __?
A 4
B 5
C 9
D 18
E 36
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11.

12.

13.

14.

NAME

If 12 and 18 each divide R without a
remainder, which of the following
could be the value of R?

A 24

B 36

C 48

D 54

E 120

Ifx+y=5andx —y =3, then x2 — y?

A 2
B 4
C 8
D 15
E 16

If n < 0, then which of the following
statements are true?

L. V-n<o0

II. V1 —-n<1

IIL V73 > 0

A Tonly

B III only

C IandIII only

D II and III only

E None of the statements are true.

If x* is defined to be x — 2, which of the

following is the value of (3* + 4%)*?
A0

HOoOW
QU

Which of the following is the total cost

of 3% pounds of apples at $0.56 per
pound and 4% pounds of bananas at

$0.44 per pound?
A $2.00
B $3.00
C $3.94
D $4.00
E $4.06
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Chapter 3 SAT and ACT Practice (continued)

15. If @ and b are real numbers where
a <banda + b <0, which of the
following MUST be true?

HEHOQ® P

16. For all x, (3x® — 13x2 + 6x — 8)(x — 4)

[u—y
g
|

oo W >5 EZamp

a<0

b<o0

laf < 18]

ab >0

It cannot be determined from the
information given.

3x* — 25x% — 46x2 + 16x — 32
3x* — 25x3 — 46x2 — 32x + 32
3x* — x% — 46x2 + 16x — 32

3x* — 25x% + 58x2 — 32x + 32
3x* — 25x% + 58x2 + 16x + 32

. Quantitative Comparison

if the quantity in Column A is
greater

if the quantity in Column B is
greater

if the two quantities are equal

if the relationship cannot be
determined from the information
given

Column A Column B

17.

The larger value
of x in the
equation
2+Tx+12=0

The smaller
value of x in the
equation
x2—Tx+12=0

1.

(2x — 3)? I 4dx(x — 3)

19. Grid-In For nonzero real numbers
a, b c andd, d = 2a, a = 2b, and
b = 2c. What is the value of %?

20. Grid-In If — 3

_3 :
T = what is the

X

4 +

value of x?
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Chapter 3, Cumulative Review (chapters 1-3)

1. State the domain and range of {(—2, 2), (0, 2), (2, 2)}. Then 1.
state whether the relation is a function. Write yes or no.

2. If f(x) = 2+ and g(x) = x + 1, find f(g()). 2.

3. Write the standard form of the equation of the line that is 3.
parallel to the line with equation y = 2x — 3 and passes
through the point at (-1, 5).

4. Graph f(x) =[x + 1]. 4,

Solve each system of equations algebraically.

5.3x + 5y =21 5.
xty=5
6.x — 2y +z=17 6.
3x+y—2z=2
20+ 3y +22=17
7. How many solutions does a consistent and independent 7.
system of linear equations have?
8. Find the value of 2 :;‘ 8.
9. Determine whether the graph of y = x3 — 2x is symmetric 9.
with respect to the origin, the x-axis, the y-axis, or none
of these.
10. Describe the transformations relating the graph of 10.
y = 2(x — 1)2 to the graph of y = x2.
11. Solve [3x — 6] < 9. 11.
12. Find the inverse of the function f(x) = % 12.

13. State the type of discontinuity (jump, infinite, or point) 13.
that is present in the graph of f(x) = [x].

14. Determine the horizontal asymptote for the graph of 14.
_x—3
f () = x+5°
15. If y varies inversely as the square root of x, and y = 20 15.

when x = 9, find y when x = 16.
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Answers (Lesson 3-1)
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Answers (Lesson 3-2)
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Answers (Lesson 3-3)
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Answers (Lesson 3-6)
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Answers (Lesson 3-7)
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Answers (Lesson 3-8)
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Chapter 3 Answer Key

Form 1A Form 1B
Page 111 Page 112 Page 113 Page 114
1. C 11. B 1. B 11. C
2. B 2. A
12 B 12. A
3 D 3 B
4 C 13 c 4 A 13 C
4. C 5. C 4. G
5 B
6 D
16. D 6. A
7 B
7 A 17 A 17 D
8 A
8 D
18. B 18. B
9 B
9 A
19. A
- 19. A
10. D
10. D
20. D 200 B
Bonus: D Bonus: B

© Glencoe/McGraw-Hill A11 Advanced Mathematical Concepts



Form 1C
Page 115 Page 116
1. B 11. A
2 C
12. D
3 C
13. A
4 C
14. C
5 C
15. C
6 C
16. C
17. B
7 C
18. D
8 A
9 B 19. A
10. D 20. B
Bonus:

© Glencoe/McGraw-Hill

Chapter 3 Answer Key

A

A12

Form 2A
Page 117 Page 118
Ly=Xxy=—X 11. giscontinuous
the origin jump
12. discontinuous
13. x— 0, y— —oo,
X—> —o0, y—» —oo
3. odd 14. rel. max. at (0, 2);
reflected over the abs. min. at
Xx-axis, expanded ) '
vertically by factor (+1.22, -0.25)
4. of 2, translated up 15, point of inflection
4 units at (1, 1)
(Ix
vertical atx = 0, 3;
16. horizontal aty = 0
5. <= 0] :
17.y = 3x + 1
ALYA |4
I EE 18. y
/ X
6. \ \
™~ \ N \5
3 \
X=-3o0r
20. k=7
8. fx) = 72%_; yes
9. F(x) =+ Vx + 4;
no
10. yes Bonus:
SR y
’ =
"IL——_—T )
/ o
= (0] X
X
NL | LA
Y
Advanced Mathematical Concepts




Chapter 3 Answer Key

Form 2B
Page 119 Page 120

1.y =X,y = —X, 11. continuous

the origin

. . discontinuous;

2. origin 12. point
3. even

translated right X=> 00, Y= oo,

3 units, 13. X—> 00, Y—>oo

compressed

vertically by a
4. factor of 0.5

5.
p(k)
[0) X
y 4
|
|
6. o) E
|
|
v

Fx) = Vx+ 4;

8. yes

9. f(x) =1=Vx; no

10. no

A 4
f(x)

© Glencoe/McGraw-Hill

rel. max. at (0, 0);
abs. min. at
14. (x1.22, —2.25)

point of inflection
15. at (—2,1)

vertical atx = 0,
1; horizontal at
16.y=0

17. y=2x + 1

18.
Y
\ \‘
NN —5
19 y =27

Bonus:

k=6

A13

Form 2C

Page 121
1.  y-axis
2. origin
3. even

translated right

4. 1 unit
5. i
|
|
o] X
|
Y
y
6. \ /
X

8. f(x) = =Vx; no

Page 122

11. discontinuous;
jump

12. continuous

X—> 00, y— oo,
13. X—> —oo, y—yoo

14. abs. max. at (0, 0)

15. point of inflection
at (0, 0)

16. vertical at x = +5;
horizontal at
y=0

17. y=Xx

18.

FUx) = Vx+1;

. yes

10. yes
f(x

19 y =32
20 y=15
Bonus: k=0
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Chapter 3 Answer Key
CHAPTER 3 SCORING RUBRIC

Level Specific Criteria

3 Superior * Shows thorough understanding of the concepts parent
graph, transformation asymptote, hole in graph, critical
point, maximum, minimum, and point of inflection.

» Uses appropriate strategies to solve problems and transform
graphs.

e Computations are correct.

* Written explanations are exemplary.

* Graphs are accurate and appropriate.

* Goes beyond requirements of some or all problems.

2 Satisfactory, * Shows understanding of the concepts parent graph,
with Minor transformation, asymptote, hole in graph, critical point,
Flaws maximum, minimum, and point of inflection.

* Uses appropriate strategies to solve problems and

transform graphs.

* Computations are mostly correct.

* Written explanations are effective.

* Graphs are mostly accurate and appropriate.

* Satisfies all requirements of problems.

1 Nearly * Shows understanding of most of the concepts parent
Satisfactory, graph, transformation, asymptote, hole in graph, critical
with Serious point, maximum, minimum, and point of inflection.

Flaws * May not use appropriate strategies to solve problems and

transform graphs.
e Computations are mostly correct.
» Written explanations are satisfactory.
* Graphs are mostly accurate and appropriate.
* Satisfies most requirements of problems.

0 Unsatisfactory | e Shows little or no understanding of the concepts parent
graph, transformation, asymptote, hole in graph, critical
point, maximum, minimum, and point of inflection.

* May not use appropriate strategies to solve problems and
transform graphs.

e Computations are incorrect.

» Written explanations are not satisfactory.

» Graphs are not accurate or appropriate.

* Does not satisfy requirements of problems.

© Glencoe/McGraw-Hill Ai14 Advanced Mathematical Concepts



Chapter 3 Answer Key

Open-Ended Assessment

Page 123

1a.

1b.

lc.

© Glencoe/McGraw-Hill

1. parent graph 2. transformation

The parent graph y = x2 is reflected
over the x-axis and translated 5 units
right and 2 units down.

1. parent graph 2. transformation

3. transformation
y=(x+2)3+

Y

—» 110

The parent graph y = x3 is translated
2 units left and 1 unit up.

A15

1d.

3a.

3b.

Since x — 4 is a common factor of
the numerator and the denominator,
the graph has point discontinuity at
X = 4. Because y increases or
decreases without bound close to

x = —3 and x = 0, there are vertical
asymptotes atx = -3 and x = 0.

_ x+1
F) = =) x + 1)
f(x) = #2, except at

X =-1, where it is undefined.

f(x) = |s undefined at x = 2.

It approaches —oo to the left of
X = 2 and +< to the right.

( 1, 16383> is a maximum. (0, 2) is a
point of inflection. (2, — %) isa

minimum. The value x = 3is not a
critical point because a line drawn
tangent to the graph at this point is
neither horizontal nor vertical. The
graph is increasing at x = 2.99 and
atx = 3.01.

f(x) = total income,
X = number of weeks

£(x) = (6.00 + 0.10x)(100 — x)

= —0.10x2 + 4x + 600
$640

7 N\
$630 / \
$6204— N
/ \

$610 / \
$600 \

0O 5 10 15 20 25 30 35 40

number of weeks

Examining the graph of the function
reveals a maximum at x = 20.

f(20) = 640, £(19.9) = 639.999, and
£(20.1) = 639.999, so £(19.9) < f(20)
and £(20) < £(20.1), which shows
that the function has a maximum of
640 when x = 20.

She should sell immediately because
the income function would always be
decreasing.

Advanced Mathematical Concepts



Chapter 3 Answer Key

Mid-Chapter Test
Page 124

1. X-axis

2. y=x,y= —x,origin

3. neither

translated up 1 unit,
expanded horizontally
4. by a factor of 2

p(x)
5.
(o] X
Y
6. 0 %

7. xX=-2o0orx=10

Quiz A
Page 125
1. none of these
2. y-axis
3. odd

g(x) is the reflection of f(x) over
the x-axis and is expanded
4. vertically by a factor of 4

Quiz C
Page 126

1. discontinuous;

jump

2. discontinuous;

infinite
3. X =09, Y —oo,

X —>—oo, Yy —oo
4. rel. max. (—1, 4);

rel. min. (1, —4)

5. min. at (2, —4.27)

g F71x) = Vx = 1; yes

9. f(x)=—-1;yes

10. no

FOOd Ay | A

© Glencoe/McGraw-Hill

x) {
\ /
\
5 \ /
[0 X
Quiz B
Page 125
y
1.
IIO \\ &
; ¥
2. {xIx<—-7orx>1}
3. f7(x) = *}°; yes
f(x) 4
\ /
4.
(0] ~X
5 Y=X
A16

Quiz D
Page 126

1. vertical at x = 2

and 3, horizontal
aty =1
2.y=x—2

translated right 3 units,
expanded vertically by a
factor of 2; vertical

3. asymptote at x = 3,

horizontal asymptote
unchanged aty = 0

(x) A
\

\
\
4.1.5;y = 1.5x; 21

5.2;:y = 2xz%; — 500
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Chapter 3 Answer Key

SAT/ACT Practice Cumulative Review
Page 127 Page 128 Page 129
1. C 10. B 1.D={-2,0, 2}
R = {2}; yes
3
2. X
2_ B u. b 3. 2x—y+7=0
f(x)
3 A 12. E
4 5 -
4 B 13. B
5. (2, 3)
5 C 14. C
6. (2, —1, 3)
6 A 15. A
7. one
7. D 6. D 8. 29
9. origin
expanded vertically by a
8. A 17. A factor of 2, translated right
10. 1 unit
11. -1<x<5
9 E 18. A
12 fx)=2+2
13. jump
19. 8
14. y=1
20. —1 15. 15

© Glencoe/McGraw-Hill A17 Advanced Mathematical Concepts
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