\qquad Date \qquad

Practice

Systems of Linear and Quadratic Functions

Solve each system by graphing.

1. $y=x^{2}-3 x$
2. $y=x^{2}+2 x$
$y=3 x$
3. $y=x^{2}$
$y=-2 x$
4. $y=x^{2}+6 x+1$
$y=x-3$

Solve each system using elimination.

5. $y=x^{2}$
$y=3 x$
6. $y=x^{2}-5 x$
$y=x-8$
7. $y=x^{2}+6 x-8$
$y=x-2$
8. $y=x^{2}+20 x+80$
$y=x-10$
9. The sales of two different products are modeled by the equations shown below. The sales are represented by y and the number of weeks the products have been selling is represented by x. According to the projections, what week(s) did the products have the same amount of sales? What were the sales of both products during the week(s) of equal sales?
Product 1: $y=x^{2}-17 x+89$
Product 2: $y=17 x+25$
10. The population of two different villages are modeled by the equations shown below. The population (in thousands) is represented by y and the number of years since 1975 is represented by x. What year(s) did the villages have the same population? What was the population of both cities during the year(s) of equal population?
Lewiston: $y=x^{2}-30 x+540$
Lockport: $y=20 x+15$
\qquad
\qquad
\qquad

9-8

Practice (continued)

Systems of Linear and Quadratic Functions

Solve each system using substitution.
11. $y=x^{2}-3 x-27$
$y=x-6$
12. $y=x^{2}-x-5$
$y=2 x-1$
13. $y=x^{2}-4 x-15$
$y=-3 x+5$
14. $y=x^{2}-6$
$y=-7 x+12$

Solve each system using a graphing calculator.

15. $y=x^{2}+x-60$
$y=x+4$
16. $y=x^{2}-6 x-35$
$y=x+25$
17. $y=x^{2}-x+0.5$
$y=x-0.25$
18. $y=x^{2}+0.15 x-0.04$
$y=0.2 x+0.1$
19. Writing What are the solutions of the system $y=3 x^{2}+2 x-20$ and $y=$ $2 x^{2}+6 x+1$? Explain how you solved the system.
20. Reasoning The graph at the right shows a quadratic function and the linear function $x=b$.
a. How many solutions does this system have?
b. Will the number of solutions be the same for any value of b ? Explain.

c. If the linear function were changed to $y=b$, would the number of solutions be the same for any value of b ?
