\qquad
\qquad
\qquad

9-5
 Practice
 Completing the Square

Find the value of \boldsymbol{c} such that each expression is a perfect-square trinomial.

1. $z^{2}+2 z+c$
2. $h^{2}+14 h+c$
3. $p^{2}-11 p+c$
4. $n^{2}+26 n+c$

Solve each equation by completing the square. If necessary, round to the nearest hundredth.
5. $t^{2}-17 t=-52$
6. $m^{2}+6 m=7$
7. $f^{2}+3 f=88$
8. $z^{2}+9 z=36$
9. $a^{2}+13 a=12$
10. $g^{2}+5 g+4=0$
11. $d^{2}+7 d+9=0$
12. $b^{2}-5 b-10=0$

Solve each equation by completing the square. If necessary, round to the nearest hundredth.
13. $6 n^{2}+9 n=12$
14. $2 t^{2}-4 t=1$
15. $3 v^{2}+9 v+5=0$
16. $4 c^{2}-8 c=1$
\qquad
\qquad Date \qquad

9-5
 Practice (continued)
 Completing the Square

17. The rectangle shown at the right has an area of $663 \mathrm{in}^{2}$. What is the value of x ?

18. What are all of the values of b that will make $x^{2}+b x+64$ a perfect square?
19. What are all of the values of b that will make $x^{2}+b x+144$ a perfect square?
20. The product of two consecutive positive even integers is 168 . What are the integers?
21. Writing Discuss how you could use graphing, factoring, and completing the square for solving the quadratic equation $x^{2}+3 x-2=0$.
22. The height of a triangle is $6 x \mathrm{~cm}$ and the base is $(3 x+10) \mathrm{cm}$. The area of the triangle is $816 \mathrm{~cm}^{2}$. What are the dimensions of the base and height of the triangle?
23. Writing Does completing the square always give a solution for a quadratic equation that cannot be factored? Explain.
24. Reasoning How do the solutions of the equation $x^{2}-6 x+9=16$ compare to the solutions of $x^{2}-6 x+9=25$? Explain how you can determine the relationship without solving both equations.
