MATH 1080 NOTES

8.3 Inverse Trigonometric Functions

Objectives:Understand and use inverse sine, cosine, and tangent functions.Find exact values of expressions using the inverse sine, cosine, and tangent functions.Use a calculator to evaluate inverse trigonometric functions.Find exact values of composite functions using inverse trigonometric functions.

(∞) $-1 \le y \le 1$
$x \leq 1$ $(-\infty,\infty)$

FUNCTION	GRAPH	DOMAIN	RANGE
$\mathbf{y} = \cos x$	$y = \cos x$	(−∞,∞)	$-1 \le y \le 1$
y = arccos x	$y = \arccos x$	$-1 \le x \le 1$	(−∞,∞)

FUNCTION	GRAPH	DOMAIN	RANGE
$y = \tan x$	$ \begin{array}{c} y \\ 6 \\ 4 \\ 2 \\ 7 \\ 7 \\ 4 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	All real numbers except $\frac{\pi}{2}n$, where n is an odd integer	(−∞,∞)
y = arctan x	y $\pi y = \arctan x$ $6 - 4 - 2 0 2 4 6x$ $-\pi$	(−∞,∞)	All real numbers except $\frac{\pi}{2}n$, where n is an odd integer

NOTE: None of the inverses of the trigonometric functions are functions.

In order for the inverse to represent a function, we must restrict the domain of the given function.

Function	Domain	Range
y = Sin x	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$	$-1 \le y \le 1$
y = Arcsin x	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \cos x$	$0 \le x \le \pi$	-1 ≤ y ≤ 1
y = Arccos x	$-1 \le x \le 1$	$0 \le y \le \pi$
y = Tan x	$-\frac{\pi}{2} < x < \frac{\pi}{2}$	all real numbers
y = Arctan	all real numbers	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

Example 1 Evaluate each of the following in radians.

a. $sin^{-1}\left(\frac{1}{2}\right)$

b.
$$sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

c.
$$cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

d.
$$tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$

Example 2 Evaluate the radian and degree measurement of each using a calculator. Round to the nearest hundredth.

- a. $sin^{-1}(0.97)$
- b. $cos^{-1}(-0.4)$
- c. $tan^{-1}(4)$

Example 3 Evaluate each of the following with exact values.

a.
$$sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right)$$

b.
$$sin^{-1}\left(sin\left(\frac{2\pi}{3}\right)\right)$$

C.
$$\cos^{-1}\left(\sin\left(\frac{\pi}{2}\right)\right)$$

d.
$$tan^{-1}\left(sin\left(\frac{\pi}{2}\right)\right)$$

e.
$$\cos^{-1}\left(\sin\left(-\frac{11\pi}{4}\right)\right)$$

Example 4 Evaluate each of the following with exact values.

a.
$$sin\left(cos^{-1}\left(\frac{4}{5}\right)\right)$$

b.
$$cos\left(tan^{-1}\left(\frac{5}{12}\right)\right)$$

c.
$$sin\left(tan^{-1}\left(\frac{7}{4}\right)\right)$$

d.
$$cos\left(sin^{-1}\left(-\frac{7}{9}\right)\right)$$