Practice 7-7 Exponential Growth and Decay

Identify the initial amount *a* and the growth factor *b* in each exponential function. (Hint: In the exponential equation $y = a \cdot b^x$, a is the initial amount and *b* is the growth factor when b > 1.)

- **1.** $f(x) = 2 \cdot 3^x$ **2.** $y = 5 \cdot 1.06^{x}$
- **4.** $h(x) = -3 \cdot 2^x$ **3.** $g(t) = 6^t$

Use the given function to find the balance in each account after the given period.

- 5. \$3000 principal earning 4% compounded annually, after 6 years $f(x) = 3000 \cdot (1.04)^6$
- 6. \$2000 principal earning 6.8% compounded annually, after 3 years $f(x) = 2000 \cdot (1.068)^3$

Find the balance in each account after the given period.

- 7. \$5000 principal earning 4% compounded annually, after 10 years
- **8.** \$3500 principal earning 3.6% compounded annually, after 2 years

Identify the initial amount *a* and the decay factor *b* in each exponential function. (Hint: In the exponential equation $y = a \cdot b^x$, a is the initial amount and *b* is the *decay* factor when b < 1.)

9. $v = 4 \cdot 0.2^{x}$ **10.** $f(x) = 3 \cdot 0.9^{x}$

Tell whether the equation represents *exponential growth*, *exponential decay*, or neither.

- **11.** $y = 2 \cdot 3^x$ **12.** $f(x) = 6 \cdot 0.5^x$
- **13.** $f(x) = 5 \cdot x^2$ **14.** $y = 0.3^{x}$

Prentice Hall Foundations Algebra 1 • Teaching Resources

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Form K

Practice (continued) 7-7 Exponential Growth and Decay

- **15.** The town manager reports that incoming revenues for a given year were \$2 million. The budget director predicts that revenues will increase by 4% per year. How much revenue will the town have available 10 years from the date of the town manager's report if the equation that models the growth is $f(x) = 2,000,000 \cdot (1.04)^{x}$?
- 16. A fisheries manager determines that there are approximately 3000 bass in a lake.
 - **a.** The population is growing at a rate of 2% per year. The function that models that growth is $y = 3000 \cdot 1.02^{x}$. How many bass will live in the lake after 4 years?
 - **b.** How many bass will live in the lake after 7 years?
 - c. About how long will it be before there are 4000 bass in the lake?
- **17.** A business purchases a computer system for \$2000. The tax code allows them to take off a portion of that purchase for each year the computer system is used. If the value of the system is *depreciated* at a rate of 15% per year, the function that models the current value of the system is $f(x) = 2000 \cdot 0.85^t$. How much is the computer worth after 4 years?

Tell whether each represents an exponential growth function, an exponential decay function, or neither.

10			L V		λV	4		
10.			1	-6-	-	Ţ		
				4				
				<u></u>				
				Ľ	Γ)
	-	5-4	1 -2	0		2 4	1 (6 (
				2				
				-5				
				-0	r			

Prentice Hall Foundations Algebra 1 • Teaching Resources

Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.