\qquad
\qquad
\qquad

7-6
 Practice

Determine whether each table or rule represents a linear or an exponential function. Explain.
1.

\boldsymbol{x}	1	2	3	4
\boldsymbol{y}	3	9	27	81

2.

x	1	2	3	4
y	3	9	15	21

3. $y=5 \cdot 2^{x}$
4. $y=6 \cdot x^{3}$
5. $y=3 x-8$
6. $y=4 \cdot 0.3^{x}$

Evaluate each function over the domain $\{\mathbf{- 2 , - 1 , 0 , 1 , 2 , 3 \}}$.
7. $f(x)=3^{x}$
8. $y=4.2^{x}$
9. $m(x)=0.3^{x}$
10. $g(t)=4 \cdot 3^{x}$
11. $y=50 \cdot 0.1^{x}$
12. $f(x)=2 \cdot 4^{x}$

Graph each exponential function using a table of values. You may have to scale your graph!

13. $f(x)=3^{x}$
14. $y=0.25^{x}$
15. $y=2 \cdot 1.2^{x}$

16. An investment of $\$ 8000$ in a certain Certificate of Deposit (CD) doubles in value every seven years. The function that models the growth of this investment is $f(x)=8000 \cdot 2^{x}$, where x is the number of doubling periods. If the investor does not withdraw any money from this CD , how much money will be available for withdrawal after 28 years?
17. A population of amoebas in a petri dish will triple in size every 20 minutes. At the start of an experiment the population is 800 . The function $y=800 \cdot 3^{x}$, where x is the number of 20 minute periods, models the population growth. How many amoebas are in the petri dish after 3 hours?
