_____ Class _____ Date ___

Practice 7-6 **Exponential Functions**

Determine whether each table or rule represents a linear or an exponential function. Explain.

- **3.** $y = 5 \cdot 2^x$ **4.** $y = 6 \cdot x^3$
- **6.** $y = 4 \cdot 0.3^{x}$ **5.** y = 3x - 8

Evaluate each function over the domain $\{-2, -1, 0, 1, 2, 3\}$.

7. $f(x) = 3^x$ **8.** $y = 4.2^x$

9. $m(x) = 0.3^x$

10. $g(t) = 4 \cdot 3^x$

11. $y = 50 \cdot 0.1^x$

12. $f(x) = 2 \cdot 4^x$

Form G

Graph each exponential function using a table of values. You may have to scale your graph!

13.
$$f(x) = 3^x$$
 14. $y = 0.25^x$ **15.** $y = 2 \cdot 1.2^x$

16. An investment of \$8000 in a certain Certificate of Deposit (CD) doubles in value every seven years. The function that models the growth of this investment is $f(x) = 8000 \cdot 2^x$, where x is the number of doubling periods. If the investor does not withdraw any money from this CD, how much money will be available for withdrawal after 28 years?

17. A population of amoebas in a petri dish will triple in size every 20 minutes. At the start of an experiment the population is 800. The function $y = 800 \cdot 3^x$, where *x* is the number of 20 minute periods, models the population growth. How many amoebas are in the petri dish after 3 hours?