MATH 1080 TRIGONOMETRY NOTES

7.2 Right Triangle Trigonometry

Objectives:Use right triangles to evaluate trigonometric functions.Use equal cofunctions of complementary angles.Use the definitions of trigonometric functions of any angle.Use right-triangle trigonometry to solve applied problems.

RIGHT TRIANGLE TRIGONOMETRY

Trigonometry is based upon ratios of the sides of right triangles.

TRIGONOMETRIC FUNCTIONS

The six **trigonometric functions** of a right triangle, with an acute angle θ , are defined by **ratios** of two sides of the triangle.

The sides are labeled in relation to the location of $\boldsymbol{\theta}.$

RECIPROCAL FUNCTIONS		
$\sin\theta = \frac{1}{\csc\theta}$	$\cos\theta = \frac{1}{\sec\theta}$	$\tan\theta = \frac{1}{\cot\theta}$
$\csc \theta = \frac{1}{\sin \theta}$	$\sec\theta = \frac{1}{\cos\theta}$	$\cot\theta = \frac{1}{\tan\theta}$

Example 1 Determine the value of each trig function as a reduced fraction.

 $\sin \theta =$ $\sin \alpha =$ 5 4 θ $\cos\theta =$ $\cos \alpha =$ 3 $\tan \theta =$ $\tan \alpha =$ $\cot \theta =$ $\cot \alpha =$ $\sec \theta =$ $\sec \alpha =$ $\csc \theta =$ $\csc \alpha =$

NOTE: θ and $(90^\circ - \theta)$ are complementary angles $\sin \theta = \frac{a}{c}$ and $\cos(90^\circ - \theta) = \frac{a}{c}$ So, $\sin \theta = \cos (90^\circ - \theta)$, for $0^\circ \le \theta \le 90^\circ$

The functions of the complements are called *cofunctions*.

COFUNCTIONS	
$\sin \theta = \cos \left(90^\circ - \theta\right)$	$\cos \theta = \sin (90^{\circ} - \theta)$
$\sin \theta = \cos \left(\pi/2 - \theta \right)$	$\cos \theta = \sin (\pi/2 - \theta)$
$\tan \theta = \cot \left(90^\circ - \theta\right)$	$\cot \theta = \tan (90^\circ - \theta)$
$\tan \theta = \cot (\pi/2 - \theta)$	$\cot \theta = \tan (\pi/2 - \theta)$
$\sec \theta = \csc (90^\circ - \theta)$	$\csc \theta = \sec (90^\circ - \theta)$
$\sec \theta = \csc (\pi/2 - \theta)$	$\csc \theta = \sec (\pi/2 - \theta)$
$\sec \theta = \csc (90^\circ - \theta)$	$\csc \theta = \sec (90^\circ - \theta)$

Example 2 Evaluate using cofunction identities.

a.
$$\cos(34^\circ) = \sin($$
 °) b. $\sec\left(\frac{\pi}{6}\right) = \csc($)

c.
$$\tan (48^\circ) = \cot ($$
 $^\circ)$ d. If $\sin \theta = \frac{5}{12}$, find $\cos \left(\frac{\pi}{2} - \theta\right)$.

e. If
$$\csc\left(\frac{\pi}{6}\right) = 2$$
, find $sec\left(\frac{\pi}{3}\right)$.

Example 3 Calculate the trig functions for a 30° - 60° - 90° triangle.

$\tan 60^\circ =$	$\cot 60^{\circ} =$
-------------------	---------------------

Example 4

A surveyor is standing 115 feet from the base of the Washington Monument. The surveyor measures the angle of elevation to the top of the monument as 78.3°. Approximate the height of the Washington Monument to the nearest foot.

Example 5

An airplane is flying at a height of 2 miles above ground level. The angle of depression from the plane to the foot of the tree is 15°. How far is the plane from the base of the tree? Approximate the distance from the plane to the tree to the nearest tenth of a mile.

EXTRA PRACTICE

Complete the table. (Memorize the $\sin \theta$, $\cos \theta$, and $\tan \theta$ values.)

θ	0°	30°	45°	60°	90°	180°	270°
radians							
sin θ							
cos θ							
tan θ							
csc θ							
sec $ heta$							
cot θ							