7.2 Right Triangle Trigonometry

Objectives: Use right triangles to evaluate trigonometric functions.
Use equal cofunctions of complementary angles.
Use the definitions of trigonometric functions of any angle.
Use right-triangle trigonometry to solve applied problems.

RIGHT TRIANGLE TRIGONOMETRY

Trigonometry is based upon ratios of the sides of right triangles.

TRIGONOMETRIC FUNCTIONS

The six trigonometric functions of a right triangle, with an acute angle θ, are defined by ratios of two sides of the triangle.

The sides are labeled in relation to the location of θ.

DEFINITION OF TRIGONOMETRIC FUNCTIONS

The six trigonometric functions are:
sine, cosine, tangent, cotangent, secant, and cosecant.

$\sin \theta=\frac{o p p}{h y p} \quad \cos \theta=\frac{a d j}{h y p} \quad \tan \theta=\frac{o p p}{a d j}$
$\csc \theta=\frac{h y p}{o p p} \quad \sec \theta=\frac{h y p}{a d j} \quad \cot \theta=\frac{a d j}{o p p}$

RECIPROCAL FUNCTIONS

$\sin \theta=\frac{1}{\csc \theta}$
$\cos \theta=\frac{1}{\sec \theta}$
$\tan \theta=\frac{1}{\cot \theta}$
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Example 1 Determine the value of each trig function as a reduced fraction.
$\sin \theta=$
$\sin \alpha=$
$\cos \theta=$
$\cos \alpha=$
$\tan \theta=$
$\tan \alpha=$
$\cot \theta=\quad \cot \alpha=$
$\sec \theta=$
$\sec \alpha=$
$\csc \theta=$
$\csc \alpha=$

NOTE: θ and $\left(90^{\circ}-\theta\right)$ are complementary angles $\sin \theta=\frac{a}{c}$ and $\cos \left(90^{\circ}-\theta\right)=\frac{a}{c}$

So, $\sin \theta=\cos \left(90^{\circ}-\theta\right)$, for $0^{\circ} \leq \theta \leq 90^{\circ}$

The functions of the complements are called cofunctions.

COFUNCTIONS

$$
\begin{array}{ll}
\sin \theta=\cos \left(90^{\circ}-\theta\right) & \cos \theta=\sin \left(90^{\circ}-\theta\right) \\
\sin \theta=\cos (\pi / 2-\theta) & \cos \theta=\sin (\pi / 2-\theta) \\
\tan \theta=\cot \left(90^{\circ}-\theta\right) & \cot \theta=\tan \left(90^{\circ}-\theta\right) \\
\tan \theta=\cot (\pi / 2-\theta) & \cot \theta=\tan (\pi / 2-\theta) \\
\sec \theta=\csc \left(90^{\circ}-\theta\right) & \csc \theta=\sec \left(90^{\circ}-\theta\right) \\
\sec \theta=\csc (\pi / 2-\theta) & \csc \theta=\sec (\pi / 2-\theta)
\end{array}
$$

Example 2 Evaluate using cofunction identities.
a. $\cos \left(34^{\circ}\right)=\sin ($
${ }^{\circ}$)
b. $\sec \left(\frac{\pi}{6}\right)=\csc ($
c. $\tan \left(48^{\circ}\right)=\cot ($
${ }^{\circ}$)
d. If $\sin \theta=\frac{5}{12}$, find $\cos \left(\frac{\pi}{2}-\theta\right)$.
e. If $\csc \left(\frac{\pi}{6}\right)=2$, find $\sec \left(\frac{\pi}{3}\right)$.

Example 3 Calculate the trig functions for a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
$\sin 30^{\circ}=$
$\csc 30^{\circ}=$
$\cos 30^{\circ}=$
$\sec 30^{\circ}=$

$\tan 30^{\circ}=\quad \cot 30^{\circ}=$
$\sin 60^{\circ}=$
$\csc 60^{\circ}=$
$\cos 60^{\circ}=$
$\sec 60^{\circ}=$
$\tan 60^{\circ}=$
$\cot 60^{\circ}=$

APPLICATIONS OF RIGHT TRIANGLES

Angle of Elevation - angle measurement of objects ABOVE the horizontal

Angle of Depression - angle measurement of objects BELOW the horizontal

Figure 12

Example 4

A surveyor is standing 115 feet from the base of the Washington Monument.
The surveyor measures the angle of elevation to the top of the monument as 78.3°.
Approximate the height of the Washington Monument to the nearest foot.

Example 5

An airplane is flying at a height of 2 miles above ground level. The angle of depression from the plane to the foot of the tree is 15°. How far is the plane from the base of the tree? Approximate the distance from the plane to the tree to the nearest tenth of a mile.

EXTRA PRACTICE

SPECIAL RIGHT TRIANGLES

Complete the table. (Memorize the $\sin \theta, \cos \theta$, and $\tan \theta$ values.)

θ	0°	30°	45°	60°	90°	180°	270°
radians							
$\sin \theta$							
$\cos \theta$							
$\tan \theta$							
$\csc \theta$							
$\sec \theta$							
$\cot \theta$							

