Algebra I - 6-2 VIDEO NOTES

Name_____

6.2 Solving Systems by Substitution

Objectives: To solve systems by substitution To analyze special types of systems

Solving linear equations using SUBSTITUTION:

SUBSTITUTION METHOD:

- Solve one of the equations for one of the variables (choose one, x or y, it doesn't matter)
- Substitute the expression for the variable into the other equation.

Problem 1: What is a solution of the system? Use substitution.

 $\begin{cases} y = 3x \\ x + y = -32 \end{cases}$

Problem 2: Using Systems of Equations

A snack bar sells two sizes of snack packs. A large snack pack is \$5, and a small snack pack is \$3. In one day, the snack bar sold 60 snack packs for a total of \$220. How many snack packs did the snack bar sell?

a. Define the variables.

b. Write a system of equations and solve using substitution.

Solution:

<u>RECALL the3 Possible Solutions to a LINEAR system:</u>

Graphic Solution	3 ⁴ <i>y</i> 0 -3	y 2 -2 0 1 -2 0 1	3 ⁴ <i>y</i> -3 -3 -3
Number of	1 solution	Infinite solutions	No solutions
Solutions			
Algebraic	The solution is where the	These lines are the same	These lines are parallel
Solution	lines cross (x, y). In the example above, the solution is (-1, 1)	line so they have every point in common, so there are infinite solutions .	and don't have any points in common, so there is no solution .
Type of Solution	CONSISTENT - INDEPENDENT	CONSISTENT - DEPENDENT	INCONSISTENT

SPECIAL CASES

If you get a true statement (identity), Then the system has infinitely many solutions.	<i>If you get a false statement, then the system has no solution.</i>
Examples:	Examples:

<u>Problem 3:</u> Systems with Infinitely Many Solutions or No Solution

How many solutions does each system have?

a.
$$\begin{cases} x = -2y + 4 \\ 3.5x + 7y = 14 \end{cases}$$

b.
$$\begin{cases} y = 3x - 11 \\ y - 3x = -13 \end{cases}$$

DON'T DO THE LESSON CHECK AT THE VERY END OF THE VIDEO