MATH 1610/MATH 1552

6.2 Normal Probability Distribution

Normal Probability Distribution

- The most important probability distribution for describing a continuous variable is the normal probability distribution. It is widely used in statistical inference.
- Application include:

Heights of people
Rainfall amounts
Test Scores Scientific measurements

- The normal distribution provides a description of the likely results obtain through sampling.
- The probability density function defines a bell-shaped curve.
- Abraham de Moivre, a French mathematician, published "The Doctrine of Chances" in 1773. He derived the normal distribution.

Normal Distribution

Normal Probability Distribution Function

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

where $\boldsymbol{\mu}=$ mean
$\sigma=$ standard deviation
$\pi=3.14159$
$e=2.71828$

Understanding the normal probability distribution is the most important statistics concept of the course. We will use this concept REGULARLY in the next course.

Let's practice understanding the areas under a normal distribution curve by applying the Empirical Rule.

Example 1 Draw a normal standard distribution curve for each scenario.
a. Draw the normal distribution with the mean.
\qquad of the area is below the mean.
\qquad of the area is above the mean.
b. Draw the normal distribution with the mean, and one standard deviation from the mean.
\qquad of the area is lies within
\qquad standard deviation from the mean.
c. Draw the normal distribution with the mean, and two standard deviations from the mean.
\qquad of the area is lies within
\qquad standard deviations from the mean.
d. Draw the normal distribution with the mean, and three standard deviations from the mean.
\qquad of the area is lies within
\qquad standard deviations from the mean.

Question: What happens if the data is not exactly 1,2 or 3 standard deviations from the mean?
Answer: To find the probability that the normal random variable (NRV) falls in a given interval, we need to use $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ and compute the area under f, but the topic is not covered in this class.

Therefore, we will typically use the following process to compute the probabilities.

1. Compute the z-score to convert everything to the standard normal distribution.

$$
z=\frac{x-\mu}{\sigma}
$$

2. Use the standard normal probability distribution table to estimate the area.

Normal Distribution

1. Bell-shaped curve
2. Total Area $=1$
3. Symmetrical

"Standard" Normal Distribution

4. Mean is equal to $0(\mu=0)$
5. Standard deviation is equal to 1 ($\sigma=1$)

Cumulative probability for the standard normal distribution
Entries in the table provide the cumulative area from the LEFT up to the vertical line above a specific value of z.

Example 2 Given that z is a standard normal random variable:
a. determine the probability of $\mathrm{P}(\mathrm{z}<1.27)$.

Or 89.80% of \mathbf{z}-scores are lower than 1.27.

b. Determine the probability of $P(z \geq 1.27)$.

Example 3 Given that z is a standard normal random variable:
a. determine the probability of $P(z<1.58)$.
b. Determine the probability of $P(z \geq 1.58)$

Example 4 Given that z is a standard normal random variable:
a. determine the probability of $P(-1 \leq z \leq 1)$
b. Determine the probability of $P(-0.50 \leq z \leq 1.25)$

Example 5

a. Determine the z value associated with the probability of 0.35 .
b. Determine the z value associated with the probability of 0.83

Example 6 Determine the z_{0} value that corresponds to the given area.
a. $P\left(z<z_{0}\right)=0.0212$
b. $P\left(z \geq z_{0}\right)=0.0212$
c. $P\left(z<z_{0}\right)=0.0375$
d. $P\left(z \geq z_{0}\right)=0.0375$
e. Determine the z score for the lower $40^{\text {th }}$ percentile.
f. Determine the z score for the upper $20^{\text {th }}$ percentile.

Converting to the Standard Normal Random Variable

$$
Z=\frac{x-\mu}{\sigma}
$$

z is a random variable that has the standard normal distribution.
z is distributed normally with a mean of 0 and a standard deviation of 1 .

APPLICATIONS

Example 7

Suppose the height of adult American females is approximately normally distributed with a mean of 162.2 cm and a standard deviation of 6.8 cm .
a. What is the probability that a randomly selected adult American female is taller than 170.5 cm ?
b. What is the probability that a randomly selected adult American female has a height between 150.5 and 170.5 cm ?

APPLICATIONS (con't)

Example 8

The average stock price for companies making up the S \& P 500 is $\$ 30$, and the standard deviation is $\$ 8.20$. Assume the stock prices are normally distributed.
a. What is the probability that a company will have a stock price no higher than $\$ 20$?
b. What is the probability that a company will have a stock price of at least $\$ 40$?
c. How high would a stock price have to be for the company to be in the top 10% ?
6.2 WS \#1 Normal Probability Distribution

1. $\overline{\mathrm{x}}=600, \mathrm{~s}=204.4$, what percent of all McDonald's food would you expect to have:
a. More than 500 calories?
b. 600 to 900 calories?
c. Less than 250 calories?
2. $\bar{x}=600, s=204.4$, how many calories would you expect any food from McDonald's above the $80^{\text {th }}$ percentile to have? This answer will be \mathbf{k} or more calories.
3. $\overline{\mathrm{x}}=600, \mathrm{~s}=204.4$, how many calories would foods from McDonald's in the middle 80% have? Your answer will read: From \qquad calories to \qquad calories.

6.2 WS \#2 Normal Probability Distribution

1. Find the area/probability under the normal curve to the left of $z=1.24$.
2. Find the area/probability under the normal curve to the right of $z=1.35$.
3. Find the area/probability under the normal curve over the interval from $\mathrm{z}=0.27$ to $\mathrm{z}=1.58$.
4. Determine the z-value that is associated with a probability of 0.35 .
5. Determine the z-value that is associated with a probability of 0.85 .
6. Determine the z-value that is associated with the $60^{\text {th }}$ percentile of the normal distribution.
7. Determine the z-values associated with the middle 60% of the normal distribution.
8. For a normal distribution, find the z-score that separates:
a. the highest 30% from the rest of the distribution.
b. the lowest 40% from the rest of the distribution.
c. the highest 75% from the rest of the distribution.
9. A fifth grader took a standardized achievement test which has a mean score of 125 and a standard deviation of 15 . The student's score was 148 . What is the student's percentile rank?
10. Women have a mean height of 63.6 inches and a standard deviation of 2.5 inches. What is the probability that a woman is 70 inches or taller?
11. Scores on the SAT form a normal distribution with a mean of 500 and standard deviation of 100 .
a. What is the minimum score necessary to be in the top 15% of the SAT distribution?
b. Determine the range of scores that defines the middle 80% of the distribution of SAT scores.
