\qquad
6.1 Solving Systems by Graphing

Objectives: To solve systems by graphing
To analyze special types of systems
Apply a system to find the solution to a problem and interpret the solution

DEFINITIONS:

System of Linear Equations:
Solution of a system of linear equations:

Problem 1: What is a solution of the system? Use a graph.

$$
\left\{\begin{array}{c}
y=x+2 \\
y=3 x-2
\end{array}\right.
$$

Problem 2: Writing a System of Equations

Scientists studied the weights of two alligators over a period of 12 months. The initial weight and growth rate of each alligator are shown below. After how many months did the alligators weigh the same amount?

ALLIGATOR 1
Initial Weight: 4 lb
Rate of Growth: 1.5 lb per month

ALLIGATOR 2
Initial Weight: 6 lb
Rate of Growth: Ilb per month

a. Define the variables.

Let $\mathrm{t}=$ \qquad

$$
\mathrm{w}=
$$

\qquad
b. Write a system of two equations.
c. Graph the system and solve.

MORE DEFINITIONS

A system can either be consistent (has an answer) or inconsistent (doesn't have an answer). If a system is consistent it will be either independent (only 1 answer) or dependent (infinite answers).

1. CONSISTENT - the system has a solution
a) INDEPENDENT - the system has ONE solution or
b) DEPENDENT - the system has INFINITE solutions
2. INCONSISTENT - the system has $N O$ solutions

3 Possible Solutions to a LINEAR system:

Graphic Solution			
Number of Solutions	1 solution	Infinite solutions	No solutions
Algebraic Solution	The solution is where the lines cross (\mathbf{x}, \mathbf{y}). In the example above, the solution is $(-1,1)$	These lines are the same line so they have every point in common, so there are infinite solutions.	These lines are parallel and don't have any points in common, so there is no solution.
Type of Solution	CONSISTENT - INDEPENDENT	CONSISTENT - DEPENDENT	INCONSISTENT

Problem 3: What is the solution of each system? Use a graph.
a. $\left\{\begin{array}{l}2 y-x=2 \\ y=\frac{1}{2} x+1\end{array}\right.$

b. $\left\{\begin{array}{l}y=2 x+2 \\ y=2 x-1\end{array}\right.$

