\qquad
\qquad Date \qquad

11-6
 Practice
 Inverse Variation

Suppose \boldsymbol{y} varies inversely with \boldsymbol{x}. Write an equation for the inverse variation.

1. $y=8$ when $x=2$
2. $y=10$ when $x=-3$
3. $y=2.5$ when $x=-5$
4. $y=\frac{1}{2}$ when $x=\frac{3}{4}$
5. If y varies inversely with x, and $y=9$ when $x=13$, find the constant of variation k.
6. If y varies inversely with x, solve for y if the constant of variation $k=6$ and $x=\frac{1}{3}$.

Graph each inverse variation.

7. $y=\frac{5}{x}$
8. $x y=-2$
9. $x y=9$
10. Rate equals $\frac{\text { distance }}{\text { time }}$. If Sharon is bicycling at a constant rate of $18 \mathrm{mi} / \mathrm{h}$, how many hours does it take to go 45 mi ? to go 90 mi ? Is this a direct variation or an inverse variation? How do you know?
11. In a given equation, M varies inversely with N. If M is 25 when $N=10$, find M when N is 25 .
\qquad Class \qquad Date \qquad
11-6
Practice (Continued)
From K
Inverse Variation
12. Graph the equations $x y=-4$ and $x y=4$. How are the graphs alike? How are they different?

Do the data in each table represent a direct variation or an inverse variation? Write an equation to model the data in each table.
13.

14.

15.

x	y
-2	1
2	-1
4	-2

Tell whether each situation represents a direct variation or an inverse variation.
16. You pay $\$ 0.10$ for each minute you talk long distance.
17. $\$ 100$ is split up by a club to buy lunch for each person.
18. You get paid $\$ 20$ each time you mow the lawn.
19. Writing Describe how you can determine if a relationship represents a direct variation without graphing it.
20. Open-Ended Write an equation modeling direct variation and an equation modeling inverse variation in which the graphs will never intersect.

