10-6

Practice

Form K

Trigonometric Ratios

For $\triangle ABC$ and $\triangle XYZ$, find the value of each expression.

1. $\sin A$

 $2.\cos A$

3. $\cos B$

4. tan *B*

5. tan *X*

6. $\cos X$

7. tan *Y*

8. sin *Y*

Find the value of each expression. Round to the nearest ten-thousandth.

9. sin 25°

10. tan 35°

11. cos 30°

12. tan 15°

13. sin 60°

14. cos 45°

15. sin 85°

16. $\cos 5^{\circ}$

17. $\tan 70^{\circ}$

For each right triangle, find the missing side length to the nearest tenth.

- **18.** The hypotenuse is 9 cm long. How long is the side adjacent to a 30° angle?
- **19.** A 60° angle has an opposite leg 12 ft long. How long is the adjacent leg?
- **20.** A 36° angle has an adjacent leg 22 yd long. How long is the hypotenuse?
- **21.** The hypotenuse is 45 mm long. How long is the side adjacent to a 45° angle?

Name	Class	Date

Practice (continued)

Form K

Trigonometric Ratios

For each right triangle described, find all three angles to the nearest tenth.

- **22.** The hypotenuse is 6 in. long. The adjacent side is 2 in. long.
- 23. The opposite side is 25 mm long. The adjacent side is 20 mm long.
- **24.** The hypotenuse is 12 inches long. The opposite side is 5 inches long.
- **25.** The adjacent side is 2 ft long. The opposite side is 7 ft long.
- **26.** The hypotenuse is 75 cm long. The opposite side is 40 cm long.
- **27.** The opposite side is 36 ft long. The adjacent side is 32 ft long.
- **28.** Jack is standing 25 feet away from the base of a flagpole. There is a 38° angle of elevation as he looks at the top of the flagpole. If Jack is 6 feet tall, how tall is the flagpole to the nearest tenth of a foot?
- **29. Reasoning** If the two acute angles of a right triangle are labeled *A* and *B*, what is the relationship between $\sin A$ and $\cos B$ and between $\sin B$ and $\cos A$? Use a 30° - 60° - 90° triangle to justify your conjecture.