\qquad
\qquad
\qquad

10-5
 Practice

Find the domain of each function.

1. $y=-2 x \sqrt{3 x}$
2. $y=\frac{2}{5} \sqrt{x}$
3. $y=-3 \sqrt{5 x+10}$
4. $y=\sqrt{x-7}$
5. $y=3.5 \sqrt{x+3}$
6. $y=\sqrt{4 x-16}$

Make a table of values and graph each function.
7. $y=\sqrt{x+4}$
8. $y=2 \sqrt{x}$
9. $y=\sqrt{x-5}$
10. $y=3 \sqrt{2 x+1}$
11. $y=2 \sqrt{\frac{x}{2}-4}$
12. $y=\sqrt{8 x+5}$
13. A pendulum completes one full swing every t seconds. The variable t is determined by the
function $t=2 \sqrt{\frac{l}{3.3}}$ where l is the length in meters of the pendulum. What are the domain and range of the function? Graph the function. What is the length of a pendulum in meters that takes 5 seconds to complete one full swing?
\qquad
\qquad
\qquad

$10-5$
 Practice (continued)
 Graphing Square Root Functions

Graph each function by translating the graph of $y=\sqrt{x}$.
14. $y=\sqrt{x}+3$
15. $y=\sqrt{x}-3$
16. $y=\sqrt{x+3}$
17. $y=\sqrt{x-3}$
18. The braking distance d in feet when stopping a car in an emergency is modeled by the function $s=\sqrt{21 d}$, where s is the speed of the car in miles per hour. Graph the function. How many feet does it take to stop if the car is traveling 25 mph ? 50 mph ? Round to the nearest foot.

Make a table of values and graph each function.
19. $y=5 \sqrt{x-6}+10$
20. $y=2 \sqrt{x+2}-6$
$21 y=5 \sqrt{x-2}$
22. Reasoning Is the following statement true or false? The domain of a square root function only includes positive numbers. If the statement is false, provide a counterexample.
23. Writing Explain how the graph of $y=\sqrt{x+4}$ is related to the graph of $y=\sqrt{x}$.

