\qquad Class \qquad Date \qquad

10-4 $\frac{\text { Practice }}{\text { Solving Radical Equations }}$

Solve each radical equation. Check your solution.

1. $\sqrt{y}+6=12$
2. $\sqrt{4 n}-6=0$
3. $\sqrt{3 k+3}=6$
4. $\sqrt{4 p-8}=8$
5. $\sqrt{5 t+1}=9$
6. $\sqrt{\frac{x^{2}}{8}}=12$
7. $\sqrt{\frac{3 m}{2}}=3$
8. $\sqrt{\frac{a^{2}}{4}}=8$
9. The motion of a pendulum can be modeled by $t=2 \sqrt{\frac{l}{3.3}}$, where t is the time in seconds for one complete swing and l is the length of the pendulum in feet. If the pendulum takes 2 seconds to complete one swing, how long is the pendulum? Round to the nearest hundredth of a foot.
10. The length r of the radius of a sphere is given by $r=\sqrt{\frac{S A}{4 \pi}}$, where $S A$ represents the sphere's surface area. If a sphere has a surface area of $276 \mathrm{~cm}^{2}$, what is the length of its radius? Use $\pi=3.14$. Round to the nearest hundredth of a centimeter.
11. The distance d in feet that it takes an automobile to stop if it is traveling S miles per hour is given by $S=\sqrt{21 d}$. Find the distance it would take an automobile traveling 45 miles per hour to stop. Round your answer to the nearest tenth of a foot.
\qquad
\qquad Date \qquad

$$
10-4 \frac{\text { Practice (continued) }}{\text { Solving Radical Equations }}
$$

Solve each radical equation. Check your solution.
12. $\sqrt{5 p+1}=\sqrt{2 p+7}$
13. $\sqrt{n+3}=\sqrt{11-n}$
14. $\sqrt{t^{2}+3}=\sqrt{4 t}$
15. $\sqrt{2 b^{2}+6}=\sqrt{5 b}$
16. $10=\sqrt{8 q+36}$
17. $\frac{z}{2}=\sqrt{z-5}$

Solve each radical equation. Check your solution. If there is no solution, write no solution.
18. $x=\sqrt{-x+20}$
19. $g=\sqrt{g+2}$
20. $h=\sqrt{-13 h-42}$
21. $w=\sqrt{7 w+18}$
22. Writing What is an extraneous solution? How do you determine if a solution is extraneous?
23. Open-Ended Write a radical equation that has two solutions. Solve the equation. Check both solutions. Show your work.

