ALGEBRA 1 1-3 PRACTICE: REAL NUMBERS and the NUMBER LINE

Name the subset(s) of the real numbers to which each number belongs.

- 1. $\frac{4}{5}$ 2. $\sqrt{16}$
- 3. -12π 4. $3.\overline{48}$
- 5. List the set of perfect squares from 1^2 to 15^2 .

Simplify each expression.

- 6. $\sqrt{81}$ 7. $-\sqrt{144}$
- 8. $\sqrt{\frac{4}{25}}$ 9. $\sqrt{0.36}$

Estimate each expression to the nearest integer.

10. $\sqrt{51}$ 11. $\sqrt{119}$

Name_____

Find the *approximate* side length of each square figure to the nearest whole number.

12. A picture frame with an area of $18 m^2$.

13. A game board with an area of $150 in^2$

Order the numbers in each set from least to greatest.

14. 5.1,
$$\sqrt{18}$$
, $\frac{28}{7}$ 15. $-\frac{13}{6}$, -2.1 , $-\frac{26}{13}$, $-\frac{9}{4}$

Tell whether each statement is true or false. If false, give an example to validate your reasoning.

- 16. All negative numbers are integers.
- 17. All integers are rational numbers.
- 18. All square roots are irrational numbers.
- 19. No positive numbers are integers.

20. Error Analysis. Explain why the below statement is incorrect. A student says that $\sqrt{7}$ is a rational number, because you can write it as a fraction $\frac{\sqrt{7}}{1}$.